Lecture 37: Final Exam Review

Mark Hasegawa-Johnson
5/2023
These slides are in the public domain

Chinese imperial examination candidates gathering around the wall where the results are posted By Qiu Ying (仇英) (attributed) - In the collection of the National Palace Museum, Public Domain, https://commons.wikimedia.org/w/index.php?curid=598340

Outline

- How to take the exam
- What is covered
- Sample problems

How to take the exam

- Be here in Lincoln Hall theater, 8am on Tuesday May 9
- Bring pencils, erasers, ID
- You can have up to three pages of notes, front \& back

Outline

- How to take the exam
- What is covered
- Sample problems

What's covered

- $2 / 3$ of the exam (about 10 problems or problem parts): material since exam 2
- $1 / 6$ of the exam (about 2.5 problems or problem parts): material from exam 1
- $1 / 6$ of the exam (about 2.5 problems or problem parts): material from exam 2

Outline of the course

- Exam 1 material
- Random variables \& decision theory
- Regression, classifiers, neural nets
- Exam 2 material
- Search, Games, and Theorem Proving
- Bayesian Networks \& HMM
- Exam 3 new material
- Computer vision, CNN, Kalman filter
- MDP, reinforcement learning, and robotics

Outline of exam 3 new material

- Computer vision
- Image formation
- CNN
- Kalman filter
- RL \& Robotics
- MDP, Bellman's equation, Value iteration, Policy iteration
- Model-based RL, exploration vs. exploitation
- Model-free RL: Q-learning, deep Q-learning, Actor-critic learning
- Robotics: Configuration space, inverse kinematics, PID controller

Vanishing point

- Plug equations for the lines into the pinhole camera equations:

$$
\begin{aligned}
\frac{x_{1}^{\prime}}{f} & =-\frac{a z+c_{1}}{z},
\end{aligned} \quad \frac{y_{1}^{\prime}}{f}=-\frac{b z+d_{1}}{z}, ~ \frac{x_{2}^{\prime}}{f}=-\frac{a z+c_{2}}{z}, \quad \frac{y_{2}^{\prime}}{f}=-\frac{b z+d_{2}}{z}
$$

- As $z \rightarrow \infty$, the two lines converge to the vanishing point, which depends only on the slope of the lines, not on their shift:

$$
\left(x^{\prime}, y^{\prime}\right)=(-f a,-f b)
$$

Convolution

$$
h[k, l] * x[k, l]=\sum_{i} \sum_{j} h[k-i, l-j] x[i, j]
$$

Kalman Filter

Prediction step: given $\mu_{t-1 \mid t-1}$ and $\sigma_{t-1 \mid t-1}^{2}$, we can predict where the fish might go at time t , but with increased uncertainty:

$$
\begin{aligned}
\mu_{t \mid t-1} & =\mu_{t-1 \mid t-1}+\mu_{\Delta} \\
\sigma_{t \mid t-1}^{2} & =\sigma_{t-1 \mid t-1}^{2}+\sigma_{\Delta}^{2}
\end{aligned}
$$

Update step: given the observation x_{t}, we can refine our estimate, and reduce our uncertainty:

$$
\begin{gathered}
k_{t}=\frac{\sigma_{t \mid t-1}^{2}}{\sigma_{t \mid t-1}^{2}+\sigma_{\epsilon}^{2}} \\
\mu_{t \mid t}=\mu_{t \mid t-1}+k_{t}\left(x_{t}-\left(\mu_{t \mid t-1}+\mu_{\epsilon}\right)\right) \\
\sigma_{t \mid t}^{2}=\sigma_{t \mid t-1}^{2}\left(1-k_{t}\right)
\end{gathered}
$$

Drone Localization based on Extended Kalman Filter (EKF) with UWB sensors and camera,
https://www.youtube.com/watch?v=kC8FgmhhSB8

Markov Decision Process

- Bellman Equation:

$$
U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)
$$

- Value Iteration:

$$
U_{i}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U_{i-1}\left(s^{\prime}\right)
$$

- Policy Iteration:
- Policy evaluation: $U_{i}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi_{i}(s)\right) U_{i}\left(s^{\prime}\right)$
- Policy improvement: $\pi_{i+1}(s)=\operatorname{argmax} R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U_{i}\left(s^{\prime}\right)$

Model-based RL

- Model $=P\left(s^{\prime} \mid s, a\right)$ and $R(s)$
- The observation, model, policy loop
- observe the results of your actions, re-estimate model, optimize policy
- Exploration versus Exploitation
- Epsilon-first learning: try every action, in every state, at least $1 / \epsilon$ times.
- Epsilon-greedy learning: explore w/prob. ϵ, exploit w/prob $1-\epsilon$.

Model-free RL: Q-learning

- $\mathrm{Q}(\mathrm{s}, \mathrm{a})$ - the "quality" of an action

$$
\begin{gathered}
Q(s, a)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right) \\
U(s)=\underset{a \in A(s)}{ } Q(s, a)
\end{gathered}
$$

- Q-learning
- Off-policy learning: TD

$$
\begin{gathered}
Q_{\text {local }}\left(s_{t}, a_{t}\right)=R_{t}\left(s_{t}\right)+\gamma \max _{a \prime \in A\left(s_{t+1}\right)} Q_{t}\left(s_{t+1}, a^{\prime}\right) \\
Q_{t+1}\left(s_{t}, a_{t}\right)=Q_{t}\left(s_{t}, a_{t}\right)+\alpha\left(Q_{\text {local }}\left(s_{t}, a_{t}\right)-Q_{t}\left(s_{t}, a_{t}\right)\right)
\end{gathered}
$$

- On-policy learning: SARSA

$$
\begin{gathered}
a_{t+1}=\pi_{t}\left(s_{t+1}\right) \\
Q_{\text {local }}\left(s_{t}, a_{t}\right) \stackrel{R_{t}}{ }\left(s_{t}\right)+\gamma Q_{t}\left(s_{t+1}, a_{t+1}\right)
\end{gathered}
$$

Deep RL

- Imitation learning is not really RL. Assume that you have labeled data, labeled with a human's actions in the same state. Train the DNN with:

$$
\mathcal{L}=-\log f_{a_{t}}\left(\vec{s}_{t}\right)
$$

- Deep Q learning is model-free RL, like Q-learning, but compute $Q(s, a)$ using a neural network

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} E\left[\left(f\left(\vec{s}_{t}, \vec{a}_{t}\right)-Q_{\text {local }}\left(\vec{s}_{t}, \vec{a}_{t}\right)\right)^{2}\right] \\
Q_{\text {local }}\left(\vec{s}_{t}, \vec{a}_{t}\right)=R_{t}\left(\vec{s}_{t}\right)+\gamma \max _{\vec{a} \prime} f\left(\vec{s}_{t+1}, \vec{a}^{\prime}\right)
\end{gathered}
$$

The Actor-Critic Algorithm

$$
\begin{gathered}
\pi_{a}(s)=\text { Probability that } a \text { is the best action in state } s \\
Q(s, a)=\text { Expected sum of future rewards if }(s, a)
\end{gathered}
$$

- The critic is trained as a normal deep Q-learner:

$$
\mathcal{L}_{\text {critic }}=\frac{1}{2} E\left[\left(f\left(\vec{s}_{t}, \vec{a}_{t}\right)-Q_{\text {local }}\left(\vec{s}_{t}, \vec{a}_{t}\right)\right)^{2}\right]
$$

- The actor is trained as an imitation learner, trying to compute a policy that will maximize the expected value of future rewards:

$$
\mathcal{L}_{\text {actor }}=-\sum_{a} \pi_{a}(s) Q(s, a)
$$

Robotics: Inverse kinematics

- Obstacles are things in the workspace, \mathcal{W}, that we don't want to run into.

Image © https://www.mathworks.com/help/fuzzy/modeling-inverse-kinematics-in-a-robotic-arm.html

- For example: we usually do this by just exhaustively testing every point in configuration space, to see if it runs into an obstacle.

Outline

- How to take the exam
- What is covered
- Sample problems

Exam 3 new material: relevant problems

Topic	Sp22 Review Exam 1	Sp22 Exam 1	Sp22 Conflict Exam 1	Sp22 Review Exam 3	Sp22 Exam 3	Sp23 Review Exam 3
Image formation	17-18	7	7			
CNN	19-20					
Kalman filter						1,2
MDP				16-18, 20	10	
Model-based learning				19(bc), 23	11	
Model-free learning				$\begin{aligned} & 19(\mathrm{ad}), 21- \\ & 2,24 \end{aligned}$	12, 13	
Robotics				25, 26	14	

