Lecture 37/:
Final Exam
Review

Mark Hasegawa-Johnson
5/2023

These slides are in the public
domain

Chinese imperial examination candidates gathering around the wall where the results are posted
By Qiu Ying ({/L2&) (attributed) - In the collection of the National Palace Museum, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=598340

https://commons.wikimedia.org/w/index.php?curid=598340

Outline

* How to take the exam
 What is covered
* Sample problems

How to take the exam

* Be here in Lincoln Hall theater, 8am on Tuesday May 9

* Bring pencils, erasers, 1D
* You can have up to three pages of notes, front & back

Outline

* What is covered
* Sample problems

What’s covered

* 2/3 of the exam (about 10 problems or problem parts): material since
exam 2

* 1/6 of the exam (about 2.5 problems or problem parts): material from
exam 1

* 1/6 of the exam (about 2.5 problems or problem parts): material from
exam 2

Outline of the course

 Exam 1 material
 Random variables & decision theory
* Regression, classifiers, neural nets

* Exam 2 material
e Search, Games, and Theorem Proving
* Bayesian Networks & HMM

* Exam 3 new material

* Computer vision, CNN, Kalman filter
 MDP, reinforcement learning, and robotics

Outline of exam 3 new material

* Computer vision
* Image formation
* CNN
e Kalman filter

* RL & Robotics
« MDP, Bellman’s equation, Value iteration, Policy iteration
* Model-based RL, exploration vs. exploitation
* Model-free RL: Q-learning, deep Q-learning, Actor-critic learning
* Robotics: Configuration space, inverse kinematics, PID controller

Vanishing point

. PIUE equations for the lines into the

pinhole camera equations:
xq' az + c; v, bz + d4
B z B Z
Xy az + c, V' bz + d,
f z f z

* As z = oo, the two lines converge to
the vanishing point, which depends
only on the slope of the lines, not on
their shift:

(', y") = (=fa,—fb)

Vanishing point (x’,y’)=(-fm,0)

i

v

Convolution

hik, 1] * x[k, 1] = 2 2 hk — i1 — jlx[i, j]

Kalman Filter

Prediction step: given p;_4,;_1 and Jf_1|t_1, we
can predict where the fish might go at time t, but
with increased uncertainty:

Ueje—-1 = He—1)e—1 T Ua
2 _ 2 2
Otit—-1 = O¢—1|t-1 T OA

Update step: given the observation x;, we can

refine our estimate, and reduce our uncertainty:

2
Ot|t-1

Uit = Heje-1 T Ke (xt - (.ut|t—1 + lie))

» »l © oo/

Drone Localization based on Extended Kalman Filter (EKF)
with UWB sensors and camera,
https://www.youtube.com/watch?v=kC8FgmhhSB8

https://www.youtube.com/watch?v=kC8FgmhhSB8

Markov Decision Process

* Bellman Equation:
U(s) = R(s) + y max E P(s'|s,a)U(s")
a
S/

* Value Iteration:
U;(s) =R(s)+vy mcellxz P(s'|s,a)U;_1(s")
S/

* Policy Iteration:
* Policy evaluation: U;(s) = R(s) + y X5, P(s'|s, m;(s))U;(s")
* Policy improvement: ;. ;(s) = argmaxR(s) + vy X5, P(s'|s, a)U;(s")
a

Model-based RL

* Model = P(s’|s,a) and R(s)
* The observation, model, policy loop

* observe the results of your actions, re-estimate model, optimize policy

* Exploration versus Exploitation
 Epsilon-first learning: try every action, in every state, at least 1/€ times.
* Epsilon-greedy learning: explore w/prob. €, exploit w/prob 1 — €.

Model-free RL: Q-learning

* Q(s,a) —the “quality” of an action
Q(s,a) = R(s) + yz P(s'|s,a)U(s")
S/
U(s) = nax, Q(s,a)
* Q-learning
» Off-policy learning: TD

Qiocai(St,at) = Re(se) + v max Q¢(s¢sq1,a’)
a’€A(St+1)

Qr+1(5¢,ae) = Q¢(se,ae) + a(Qlocal(St» a;) — Qc(s¢, at))
* On-policy learning: SARSA
Aryq = Te(Sp1)
Qiocai(st,ar) = Re(S¢) + ¥ Qe (Set1,Ar1)

Deep RL

* Imitation learning is not really RL. Assume that you have labeled
data, labeled with a human’s actions in the same state. Train the DNN

with: .
L=- logfat(st)

e Deep Q learning is model-free RL, like Q-learning, but compute Q(s,a)
using a neural network

1
L = E E[(f(gt» (/_it) _ Qlocal (§t' C_it))2]

Quocai (§t: (f_it) — Rt(gt) Ty I%E}Xf(gt+1: (/_i,)

The Actor-Critic Algorithm

m,(s) = Probability that a is the best action in state s
Q(s,a) = Expected sum of future rewards if (s, a)

* The critic is trained as a normal deep Q-learner:

1 > > > >
L critic — E E[(f(st» at) _ Qlocal (St» at))2]

* The actor is trained as an imitation learner, trying to compute a policy
that will maximize the expected value of future rewards:

L actor = — z e (s)Q(s, a)

a

Robotics: Inverse kinematics

* Obstacles are things in the workspace, W, that we

, .
don’t want to run into.)\ () Desired locatior

 We want to plan a path through configuration
space, C, such that we don’t run into any obstacle.

* In order to do that, we need inverse kinematics: a
function that converts obstacles in the workspace,
WObS' into eqUIvaIent ObStaCIes in Conﬁguration Image © https://www.mathworks.com/help/fuzzy/modeling-

inverse-kinematics-in-a-robotic-arm.html
space, Cops-

Cobs = 1q:3b: ¢, (q) € Wops}

* For example: we usually do this by just exhaustively

testing every point in configuration space, to see if it
runs into an obstacle.

Outline

* Sample problems

Exam 3 new material: relevant problems

Topic Sp22 Sp22 Sp22 Sp22 Sp23
Review Exam 1 Conflict Review Review
Exam 1 Exam 1 Exam 3 Exam 3
7

Image formation 17-18 7

CNN 19-20

Kalman filter 1,2
MDP 16-18, 20 10

Model-based learning 19(bc), 23 11

Model-free learning 19(ad), 21- 12,13

2,24
Robotics 25, 26 14

