
Lecture 37:
Final Exam

Review
Mark Hasegawa-Johnson

5/2023
These slides are in the public

domain

Chinese imperial examination candidates gathering around the wall where the results are posted
By Qiu Ying (仇英) (attributed) - In the collection of the National Palace Museum, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=598340

https://commons.wikimedia.org/w/index.php?curid=598340

Outline

• How to take the exam
• What is covered
• Sample problems

How to take the exam

• Be here in Lincoln Hall theater, 8am on Tuesday May 9
• Bring pencils, erasers, ID
• You can have up to three pages of notes, front & back

Outline

• How to take the exam
• What is covered
• Sample problems

What’s covered

• 2/3 of the exam (about 10 problems or problem parts): material since
exam 2
• 1/6 of the exam (about 2.5 problems or problem parts): material from

exam 1
• 1/6 of the exam (about 2.5 problems or problem parts): material from

exam 2

Outline of the course

• Exam 1 material
• Random variables & decision theory
• Regression, classifiers, neural nets

• Exam 2 material
• Search, Games, and Theorem Proving
• Bayesian Networks & HMM

• Exam 3 new material
• Computer vision, CNN, Kalman filter
• MDP, reinforcement learning, and robotics

Outline of exam 3 new material

• Computer vision
• Image formation
• CNN
• Kalman filter

• RL & Robotics
• MDP, Bellman’s equation, Value iteration, Policy iteration
• Model-based RL, exploration vs. exploitation
• Model-free RL: Q-learning, deep Q-learning, Actor-critic learning
• Robotics: Configuration space, inverse kinematics, PID controller

Vanishing point

• Plug equations for the lines into the
pinhole camera equations:

𝑥!"

𝑓
= −

𝑎𝑧 + 𝑐!
𝑧

,
𝑦!"

𝑓
= −

𝑏𝑧 + 𝑑!
𝑧

𝑥#"

𝑓
= −

𝑎𝑧 + 𝑐#
𝑧

,
𝑦#"

𝑓
= −

𝑏𝑧 + 𝑑#
𝑧

• As 𝑧 → ∞, the two lines converge to
the vanishing point, which depends
only on the slope of the lines, not on
their shift:

𝑥", 𝑦" = (−𝑓𝑎, −𝑓𝑏)

Image
plane

Object

Pinhole

y’

y

z

f

Vanishing point (x’,y’)=(-fm,0)

Convolution

ℎ 𝑘, 𝑙 ∗ 𝑥 𝑘, 𝑙 = (
!

(
"

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗

Kalman Filter

Prediction step: given 𝜇!"#|!"# and 𝜎!"#|!"#% , we
can predict where the fish might go at time t, but
with increased uncertainty:

𝜇!|!"# = 𝜇!"#|!"# + 𝜇&
𝜎!|!"#% = 𝜎!"#|!"#% + 𝜎&%

Update step: given the observation 𝑥!, we can
refine our estimate, and reduce our uncertainty:

𝑘! =
𝜎!|!"#%

𝜎!|!"#% + 𝜎'%

𝜇!|! = 𝜇!|!"# + 𝑘! 𝑥! − 𝜇!|!"# + 𝜇'
𝜎!|!% = 𝜎!|!"#% 1 − 𝑘!

Drone Localization based on Extended Kalman Filter (EKF)
with UWB sensors and camera,
https://www.youtube.com/watch?v=kC8FgmhhSB8

https://www.youtube.com/watch?v=kC8FgmhhSB8

Markov Decision Process

• Bellman Equation:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑈 𝑠′

• Value Iteration:

𝑈$(𝑠) = 𝑅 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑈$%&(𝑠′)

• Policy Iteration:
• Policy evaluation: 𝑈$(𝑠) = 𝑅 𝑠 + 𝛾 ∑%"𝑃 𝑠′|𝑠, 𝜋$(𝑠) 𝑈$(𝑠′)
• Policy improvement: 𝜋$&! 𝑠 = argmax

'
𝑅 𝑠 + 𝛾 ∑%"𝑃 𝑠′|𝑠, 𝑎 𝑈$(𝑠′)

Model-based RL
• Model = 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠)
• The observation, model, policy loop

• observe the results of your actions, re-estimate model, optimize policy

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 1/𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

Model-free RL: Q-learning
• Q(s,a) – the “quality” of an action

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾C
%"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈(𝑠) = max
'∈)(%)

𝑄(𝑠, 𝑎)

• Q-learning
• Off-policy learning: TD

𝑄,-.', 𝑠/ , 𝑎/ = 𝑅/(𝑠/) + 𝛾 max
'"∈)(%!"#)

𝑄/(𝑠/&!, 𝑎′)

𝑄/&! 𝑠/ , 𝑎/ = 𝑄/ 𝑠/ , 𝑎/ + 𝛼 𝑄,-.', 𝑠/ , 𝑎/ − 𝑄/ 𝑠/ , 𝑎/
• On-policy learning: SARSA

𝑎/&! = 𝜋/(𝑠/&!)
𝑄,-.', 𝑠/ , 𝑎/ = 𝑅/(𝑠/) + 𝛾𝑄/(𝑠/&!, 𝑎/&!)

Deep RL

• Imitation learning is not really RL. Assume that you have labeled
data, labeled with a human’s actions in the same state. Train the DNN
with:

ℒ = − log𝑓E! 𝑠F
• Deep Q learning is model-free RL, like Q-learning, but compute Q(s,a)

using a neural network

ℒ =
1
2𝐸 𝑓 𝑠F, �⃗�F − 𝑄GHIEG(𝑠F, �⃗�F) J

𝑄GHIEG(𝑠F, �⃗�F) = 𝑅F(𝑠F) + 𝛾maxEK
𝑓 𝑠FLM, �⃗�′

The Actor-Critic Algorithm
𝜋! 𝑠 = Probability that 𝑎 is the best action in state 𝑠
𝑄 𝑠, 𝑎 = Expected sum of future rewards if (𝑠, 𝑎)

• The critic is trained as a normal deep Q-learner:

ℒ '($)$' =
1
2
𝐸 𝑓 𝑠), �⃗�) −𝑄*+'!*(𝑠), �⃗�)) ,

• The actor is trained as an imitation learner, trying to compute a policy
that will maximize the expected value of future rewards:

ℒ !')+(= −*
!

𝜋!(𝑠)𝑄(𝑠, 𝑎)

Robotics: Inverse kinematics
• Obstacles are things in the workspace, 𝒲, that we

don’t want to run into.

• We want to plan a path through configuration
space, 𝐶, such that we don’t run into any obstacle.

• In order to do that, we need inverse kinematics: a
function that converts obstacles in the workspace,
𝒲012, into equivalent obstacles in configuration
space, 𝐶012.

𝐶012 = 𝑞: ∃𝑏: 𝜑3 𝑞 ∈ 𝒲012

• For example: we usually do this by just exhaustively
testing every point in configuration space, to see if it
runs into an obstacle.

Image © https://www.mathworks.com/help/fuzzy/modeling-
inverse-kinematics-in-a-robotic-arm.html

Outline

• How to take the exam
• What is covered
• Sample problems

Exam 3 new material: relevant problems

Topic Sp22
Review
Exam 1

Sp22
Exam 1

Sp22
Conflict
Exam 1

Sp22
Review
Exam 3

Sp22
Exam 3

Sp23
Review
Exam 3

Image formation 17-18 7 7
CNN 19-20

Kalman filter 1,2
MDP 16-18, 20 10

Model-based learning 19(bc), 23 11

Model-free learning 19(ad), 21-
2, 24

12, 13

Robotics 25, 26 14

