CS440/ECE448
Lecture 35: Planning %(x,y)oes,-red,ocaﬁon
and Control

Mark Hasegawa-Johnson, 4/2023

These slides are in the public domain

Outline

* The robot path planning problem
» Workspace vs. Configuration space

 Path planning
* Visibility graph
* Rapid Random Trees (RRT)

* Trajectory control
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

What is a “Robot”?

Example: Shaky the robot, 1972
https://en.wikipedia.org/wiki/Shakey the robot

* Planning
e Antenna for radio link
* On-board logic
e Camera control unit

* Perceiving
* Range finder
* Television camera
* Bump detector
* Acting
* Caster wheel
* Drive motor
* Drive wheel

ON-BOARD
0G| -

CAMERA =

CONTRO
UNIT

BUMP |

IDETECTOR

CASTER
WHEEL

MOTOR

WHEEL

Example: Robot Arm

Adeept robot arm for Arduino (from Amazon)

* How does the robot arm decide
when it has successfully grasped
acup?

* How does it find the shortest
path for its hand?

Configuration Space Example: Robot Arm
https://www.youtube.com/watch?v=P2r9U4wkjcc

= @ Premium robot arm Q = A ﬂ

. P> >l o) 001/6:56

How to Make Hydraulic Powered Robotic Arm from Cardboard

https://www.youtube.com/watch?v=P2r9U4wkjcc

Outline

» Workspace vs. Configuration space

 Path planning
* Visibility graph
* Rapid Random Trees (RRT)

* Trajectory control

* Time scaling
* Proportion-Integral-Derivative (PID) controller

* Model predictive control

* Model-based and model-free RL

The Robot Arm Reaching Problem

https://www.mathworks.com/help/fuzzy/modeling-inverse-kinematics-in-a-robotic-arm.htm|

* Our goal is to reach a
particular location (x,y) (x.y) Desired location

* But we can’t control (x,y)
directly! What we actually
control is (84, 6,).

Workspace vs. Configuration space

* A robot’s workspace, W, is the
physical landscape in which it
operates, W c R3.

» Configuration space, C, is the set of
joint angles that govern the robot’s
shape. For example, if we have four
angles to control, then C ¢ R*:

' shoulder azimuth |
__|shoulder elevation
9= 1 elbow elevation

| gripper opening |

€ C cR?

= @ Premium robot arm Q o i

o) 0:01/6:56

How to Make Hydraulic Powered Robotic Arm from Cardboard

Forward kinematics

The forward kinematics function, ¢, (q), maps (point
on robot, configuration space)—(workspace). This is)\
just geometry. Example:

(x.y) Desired location

* b = a particular point on the arm which is b meters from
the shoulder, 0 < b < L; + L,

* q = [041,0;]
Image © https://www.mathworks.com/help/fuzzy/modeling-
inverse-kinematics-in-a-robotic-arm.html
‘
b 6
cos 0y <,
_ b sin 64
?(q) = 5 Ly cos8y + (b — L;)cos(6; + 92)] .
L Ll sin 01 + (b — Ll) Sin(Ql + 02) ="

The Robot Arm Reaching Problem

Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Configuration Space Visualization of 2-D Robotic Manipulator

Workspace

C-Space

Simulation Mode:

Simulation Control:

Prof. Ron Alterovitz's Robotics courses

© Setup — the robot’s arms, base and obstacles are fully adjustable
Configure — only the robot's configuration may be changed (arm angles)
Inverse Kinematic — click or drag the robot's end effector to position the robot.

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course instance/129874/assessment/23
43758

https://us.prairielearn.com/pl/course_instance/129874/assessment/2343758
https://us.prairielearn.com/pl/course_instance/129874/assessment/2343758

Obstacles and Inverse kinematics

* Obstacles are things in the workspace, W, that we

, .
don’t want to run into.)\ () Desired locatior

 We want to plan a path through configuration
space, C, such that we don’t run into any obstacle.

* In order to do that, we need inverse kinematics: a
function that converts obstacles in the workspace,
WObS' into eqUIvaIent ObStaCIes in Conﬁguration Image © https://www.mathworks.com/help/fuzzy/modeling-

inverse-kinematics-in-a-robotic-arm.html
space, Cops-

Cobs = 1q:3b: ¢, (q) € Wops}

* For example: we usually do this by just exhaustively

testing every point in configuration space, to see if it
runs into an obstacle.

The Robot Arm Reaching Problem

Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Configuration Space Visualization of 2-D Robotic Manipulator

Workspace

C-Space

Simulation Mode:

Simulation Control:

Prof. Ron Alterovitz's Robotics courses

© Setup — the robot’s arms, base and obstacles are fully adjustable
Configure — only the robot's configuration may be changed (arm angles)
Inverse Kinematic — click or drag the robot's end effector to position the robot.

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Outline

 Path planning

* Visibility graph

* Rapid Random Trees (RRT)
* Trajectory control

* Time scaling
* Proportion-Integral-Derivative (PID) controller

* Model predictive control

* Model-based and model-free RL

The planning
problem

What is the best way
to get from
configuration 1 to
configuration 27

|

configuration 1

L

&

|

configuration 2

8

| Workspace - C-Space

What is “best”?

We need some way to define the word
“best.”
Assumption: The shortest
path in C-space is the best
way to get from config 1 to
Config 2. Workspace . C-Space

configuration 1

Implied assumption:
Longer path in C-space =
More manipulation of robot motors =

Greater energy expenditure =
Bad.

configuration 2

Finding the shortest path

Here are some algorithms you know that are guaranteed to find the
shortest path:

* Dijkstra’s algorithm (BFS)
e A* search

In fact, A* search was invented as a solution to the robot path planning
problem. However, A* search is not quite well-suited to this problem,
because...

A* requires discretizing the
search space

A* assumes a discrete search space.

To apply it to the robot path-planning
problem, we first need to discretize
C-space.

We can discretize it using a
rectangular grid, but doing so
reduces the precision of our answer.

C- ‘pace

Outline

* Visibility graph
* Rapid Random Trees (RRT)

* Trajectory control
* Time scaling
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

Visibility Graph CSpuce

Suppose all the obstacles are polygons in
C-space. Then the shortest path is
guaranteed to be:

* From starting point to the corner of an
obstacle, then...

e ...from that corner to another corner,
then....

e ...from the corner of an obstacle to the
goal.

Visibility Graph

The algorithm, then, is:

1.
2.

3.

Find all the corners.

Find the distances between every pair
of corners.

Search that graph, using A*, to find
the best path.

Limitations

The limitation of a visibility graph: it only works if the obstacles are
polygons in C-space. If obstacles are arcs, they don’t have corners.

Workspac;:) C-Space

-
,

Outline

* Rapid Random Trees (RRT)

* Trajectory control
* Time scaling
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

C-Space Best-path algorithms

* A* on a rectangular grid

* Search nodes: squares on the grid
e A* on a visibility graph

* Search nodes: obstacle corners

* A* on a graph of rapid random trees (RRT)
e Search nodes: randomly sampled points

R RT C-Space

X X
1. Generate a bunch of randomly
sampled points to serve as search
nodes X

RRT

. Generate a bunch of randomly

sampled points to serve as search
nodes

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

. Generate more samples in the vicinity
of best points

Repeat steps 2 through 4

RRT

X X
. Generate a bunch of randomly
sampled points to serve as search
nodes X

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

. Generate more samples in the vicinity)S(
of best points

Repeat steps 2 through 4

RRT

. Generate a bunch of randomly
sampled points to serve as search
nodes

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

. Generate more samples in the vicinity
of best points

Repeat steps 2 through 4

RRT

. Generate a bunch of randomly
sampled points to serve as search
nodes

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

. Generate more samples in the vicinity
of best points

Repeat steps 2 through 4

Key benefits of RRT

* Even with very limited computation (e.g., you can only afford one
iteration), you still get a path that solves the problem

* In the limit of infinite computation (infinite # iterations), you get the
best possible continuous-space path

Outline

* Trajectory control
* Time scaling
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

Trajectory control:
maximum torque

C-Space

Now that you have an optimum path,
how fast should the robot travel along
that path?

Consideration #1: maximum torque.
01(t)

Find g(t) = 0,(t) so that
d+0, d40,
172 < maxy, 172 < max,

Trajectory control:
maximum safe velocity

Consideration #2: maximum safe velocity.

01(t)
10, (L)]
2 2

(dwl) N (dwz) -

— — | <v
J\dt dt max
...where w(t) is the solution to the
inverse kinematics:

1] € (w3b: 0y (a®) = w(o))

wo (1)

Find g(t) = so that

Outline

* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

Trajectory control: error
management!!!

C-Space

Consideration #3: what do you do if you
start on a path but discover that your
motor is miscalibrated and you’re going
the wrong direction?

P-controller C-Space

A proportional controller (P-controller)
adds some extra torque in proportion to
the error

o] = Kta® e

...

r(a

P-controller Problems C-Space

A P-controller tends to result in oscillating
overshoot.

PD-controller C-Space

A proportional-derivative controller (PD-
controller) adds some extra torque in
proportion to the error of the derivative:

d
56| = Kela@® =)
+Kp(q(t) —7(t))

Doing this can smooth out the trajectory,
but can leave some long-term error

PID-controller C-Space

A proportional-integral-derivative controller
(PID-controller) adds some extra torque in
proportion to the error of the integral:

=] Kp(q(®) = ()

+K, f (q(®) — r(z))dr
Ky @G0 - #()

The P term fixes short-term errors.
The | term fixes long-term errors.
The D term smooths out oscillations.

Outline

* Model predictive control

* Model-based and model-free RL

What if your motors
behave randomly?

C-Space

* What if your motors have some
randomness?

* Then you might not be able to plan an
exact trajectory.

* The best you can do is plan a trajectory
that goes in the right general direction.

A

Model predictive control

. means the following strategy.

Plan an optimum trajectory

Go partway

Observe where you are
Recalculate the optimal trajectory
Repeat

C-Space

Outline

* Model-based and model-free RL

What if your transition
probabilities are unknown?

C-Space

* So far, we assume that you have

some idea what your motors will
do.

* What if you have no idea?
* Reinforcement learning!

What if your transition
probabilities are unknown?

* Model-based reinforcement
learning:
* Try some stuff, observe what
happens

* Update a model of your motors
and your workspace

e Update your policy
* Model-free reinforcement
learning

* Try some stuff, observe what
happens

* Update a Q-table that tells you
what actions to perform

C-Space

Outline

* The robot path planning problem
» Workspace vs. Configuration space

 Path planning
* Visibility graph
* Rapid Random Trees (RRT)

* Trajectory control
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

