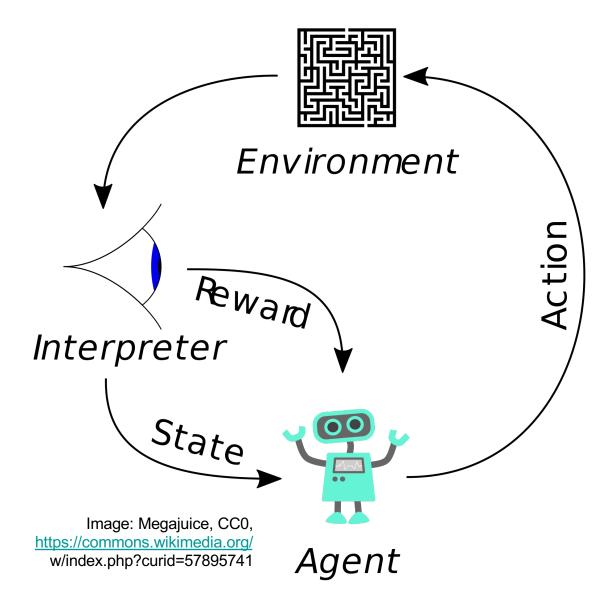
Deep Reinforcement Learning

CS440/ECE448 Lecture 33

Mark Hasegawa-Johnson, 4/2023 These slides are in the public domain



Review: Reinforcement Learning

- Markov Decision Process (MDP): Given P(s'|s,a) and R(s), you can solve for $\pi^*(s)$, the optimal policy, by finding U(s), the value of each state, using either value iteration or policy iteration.
- Model-Based Reinforcement Learning: If P(s'|s,a) and R(s) are unknown, you can find for $\pi(s)$ by using the observation-model-policy loop.
- Model-Free Reinforcement Learning: Instead of learning P(s'|s,a) and then calculating $\pi(s)$, we can directly find the optimum action by learning Q(s,a).

Outline

- Imitation learning: learn the optimal policy by imitating a human
- Deep Q learning: compute Q(s,a) using a neural network

Policy Learning

Why can't we just learn a neural net (or even a table lookup) that does this:

Probabilistic Policy

If we have |A| possible, actions, $1 \le a \le |A|$, we could train the network to learn a hidden layer h(s) so that:

$$\pi_a(s) = \frac{\exp(w_a^T h(s))}{\sum_{k=1}^{|A|} \exp(w_k^T h(s))} = P(A = a | S = s)$$

Meaning "the probability that the best action is a."

How do we train it?

- Training data only give us (s_i, a_i, s'_i, R_i) .
- BAD IDEA: train the network to choose $A = a_i$ that maximizes the immediate reward, R_i , and just ignore future rewards.
- GOOD IDEA: Train the network to maximize $U(s_i') = \text{sum of all future rewards.}$
- PROBLEM: we don't know $U(s_i')$.

$$(s_1, a_1, s'_1, R_1)$$

 (s_2, a_2, s'_2, R_2)
 (s_3, a_3, s'_3, R_3)
 (s_4, a_4, s'_4, R_4)
 (s_5, a_5, s'_5, R_5)
 \vdots

How to make Policy Learning trainable

- 1. Actor-Critic RL. We'll come back to this next time.
- 2. Imitation learning.

Imitation learning

- In some applications, you cannot bootstrap yourself from random policies
 - High-dimensional state and action spaces where most random trajectories fail miserably
 - Expensive to evaluate policies in the physical world, especially in cases of failure
- Solution: learn to imitate sample trajectories or demonstrations
 - This is also helpful when there is no natural reward formulation

Imitation learning: Discrete actions

- \vec{s}_t = a representation of the state of the environment at time t (can be a real-valued vector)
- a_t = the action that a human actor performed in response to this state (discrete)
- $f_k(\vec{s}_t) = k^{th}$ element in the softmax output of a neural network, given \vec{s}_t as the input
- Training criterion: train the neural network in order to minimize

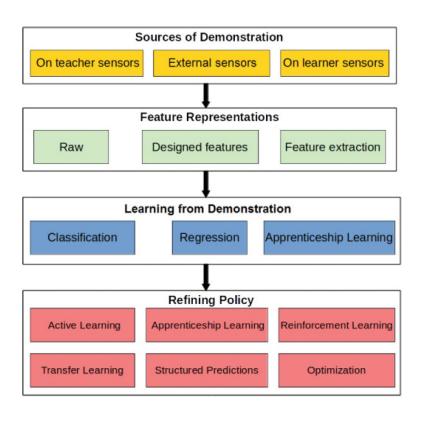
$$\mathcal{L} = -\log f_{a_t}(\vec{s}_t)$$

Imitation learning: Continuous actions

- \vec{s}_t = a representation of the state of the environment at time t (can be a real-valued vector)
- a_t = the action that a human actor performed in response to this state (continuous)
- $f(\vec{s}_t)$ = real-valued output of a neural network, given \vec{s}_t as the input
- Training criterion: train the neural network in order to minimize

$$\mathcal{L} = \frac{1}{2}E[(f(\vec{s}_t) - a_t)^2]$$

Overview of imitation learning methods

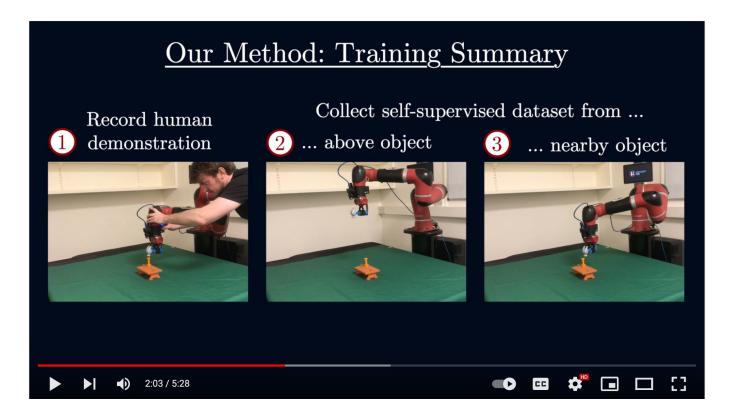


Methods differ in:

- Feature representation: raw pixels/joint angles, or have you already used some other method to learn a deep feature representation?
- Training criterion: classification (discrete actions), or regression (continuous actions)?

Hussein et al. Imitation Learning: A Survey of Learning Methods, 2018.

Example: Coarse-to-Fine Imitation Learning



Edward Johns, Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration, 2021.

Outline

- Imitation learning: learn the optimal policy by imitating a human
- Deep Q learning: compute Q(s,a) using a neural network

Review: Q-Learning

Q(s,a) – the "quality" of an action

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a)U(s')$$
$$U(s) = \max_{a \in A(s)} Q(s,a)$$

- Q-learning
- Off-policy learning: TD

$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma \max_{a' \in A(s_{t+1})} Q_t(s_{t+1}, a')$$

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha (Q_{local}(s_t, a_t) - Q_t(s_t, a_t))$$

On-policy learning: SARSA

$$a_{t+1} = \pi_t(s_{t+1})$$

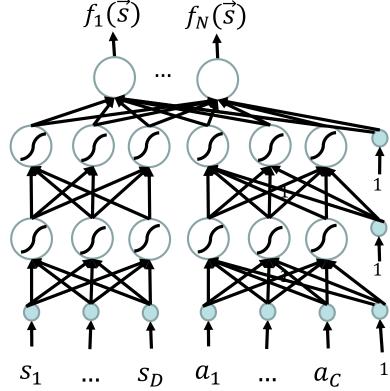
$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma Q_t(s_{t+1}, a_{t+1})$$

Deep Q learning: Discrete actions

Instead of discrete s, suppose \vec{s} is a vector of real numbers, e.g., the image from the robot's eye camera:

$$\vec{s} = [s_1, \dots, s_D] =$$

IDeep Q-learning uses a neural network to compute an estimate $f_a(\vec{s})$ which is as close as possible to $Q(\vec{s}, a)$.



Deep Q learning: Continuous actions

Instead of discrete s, suppose \vec{s} is a vector of real numbers, e.g., the image from the robot's eye camera:

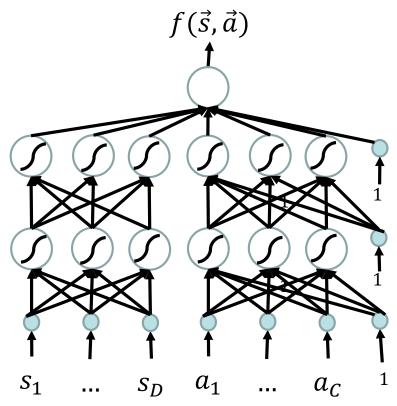
$$\vec{s} = [s_1, \dots, s_D] =$$

Instead of discrete a, suppose \vec{a} is a vector, e.g., cannon angle and velocity,

$$\vec{a} = [a_1, \dots, a_C]$$

Deep Q-learning uses a neural network to compute an estimate $f(\vec{s}, \vec{a})$ which is as close as possible to $Q(\vec{s}, \vec{a})$.

Copyright Taito.



MMSE Deep Q learning

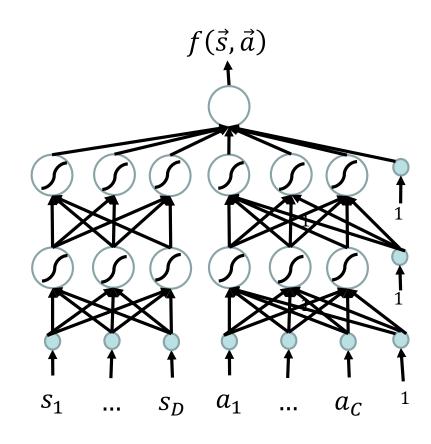
Suppose we train the neural network weights in order to minimize the mean-squared error (MMSE):

$$\mathcal{L} = \frac{1}{2} E[(f(\vec{s}, \vec{a}) - Q(\vec{s}, \vec{a}))^2]$$

(where I'm using $E[\cdot]$ as a lazy way to write "average over all training runs of the game").

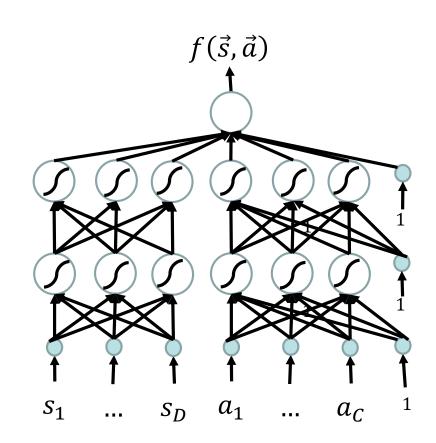
Then, for each weight w, we update as

$$w \leftarrow w - \eta \frac{d\mathcal{L}}{dw}$$



What makes deep Q learning harder than normal neural network training

- We don't know the true value of $Q(\vec{s}, \vec{a})$ for <u>any</u> of the training runs!
- $Q(\vec{s}, \vec{a})$ is defined to be the expected value of performing action \vec{a} . We never know its true expected value: all we know is whether we won or lost that particular game.
- So we can't compute \mathcal{L} , and we can't compute $\frac{d\mathcal{L}}{dw}$, and we can't update w!



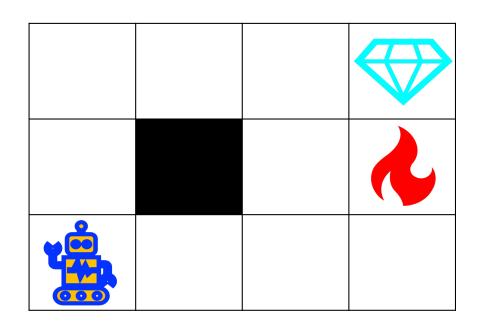
The solution: Q_{local}

Remember that Q learning was defined as

$$\begin{aligned} Q_{t+1}(s_t, a_t) \\ &= Q_t(s_t, a_t) + \alpha \big(Q_{local}(s_t, a_t) - Q_t(s_t, a_t) \big) \end{aligned}$$

where $Q_{local}(s_t, a_t)$ is defined, e.g., in TD as

$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma \max_{a'} Q_t(s_{t+1}, a')$$



...for s_{t+1} equal to the next state we reach after action a_t on **this particular game**.

The solution: Q_{local}

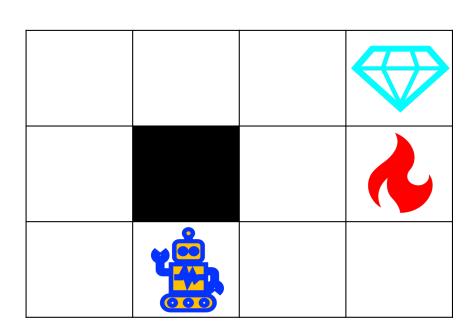
Let's define deep Q learning using the same Q_{local} :

$$\mathcal{L} = \frac{1}{2} E[(f(\vec{s}_t, \vec{a}_t) - Q_{local}(\vec{s}_t, \vec{a}_t))^2]$$

where $Q_{local}(\vec{s}_t, \vec{a}_t)$ is:

$$Q_{local}(\vec{s}_t, \vec{a}_t) = R_t(\vec{s}_t) + \gamma \max_{\vec{a}'} f(\vec{s}_{t+1}, \vec{a}')$$

Now we have an L that depends only on things we know $(f(\vec{s}_t, \vec{a}_t), R_t(\vec{s}_t), \text{ and } f(\vec{s}_{t+1}, \vec{a}'))$, so it can be calculated, differentiated, and used to update the neural network.



Quiz

Try the quiz!

https://us.prairielearn.com/pl/course instance/129874/assessment/2342328

Dealing with training instability

Challenges

- Target values are not fixed
- Successive experiences are correlated and dependent on the policy
- Policy may change rapidly with slight changes to parameters, leading to drastic change in data distribution

Solutions

- Freeze target Q network
- Use experience replay

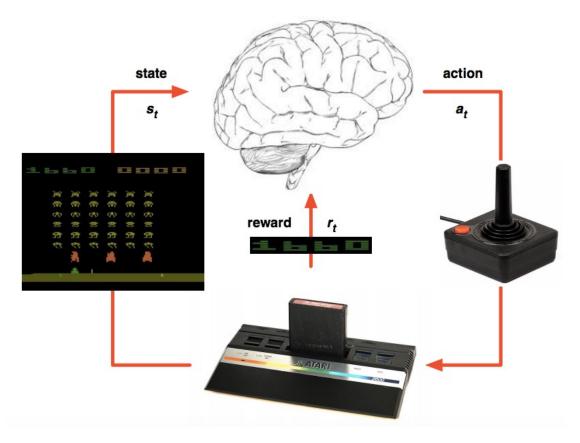
Experience replay

- At each time step:
 - Take action \vec{a}_t according to epsilon-greedy policy
 - Store experience $(\vec{s}_t, \vec{a}_t, r_{t+1}, \vec{s}_{t+1})$ in replay memory buffer

	$(\vec{s}_1, \vec{a}_1, r_2, \vec{s}_2)$
	$(\vec{s}_2, \vec{a}_2, r_3, \vec{s}_3)$
	•••
$(\vec{s}_t, \vec{a}_t, r_{t+1}, \vec{s}_{t+1}) \longrightarrow$	

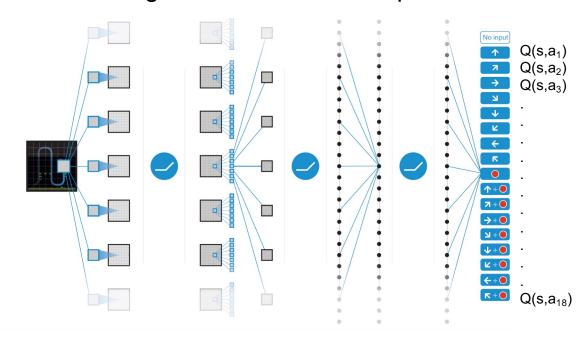
- Learning:
 - -Randomly sample a minibatch, \mathcal{D} , from the replay buffer.

D = randomly sampled set of tuples



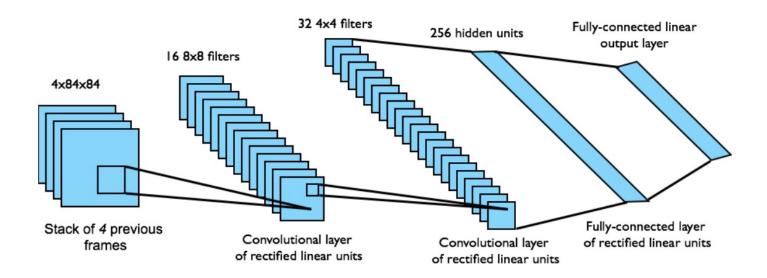
Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

- End-to-end learning of Q(s,a) from pixels s
- Output is Q(s,a) for 18 joystick/button configurations
- Reward is change in score for that step



Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

- Input state s is stack of raw pixels from last 4 frames
- Network architecture and hyperparameters fixed for all games



Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Deep Q-Learning Playing Atari Breakout

Summary: Deep RL, Part 1

 Imitation learning: learn the optimal policy by imitating a human

$$\mathcal{L} = -\log f_{a_t}(\vec{s}_t)$$

Deep Q learning: compute Q(s,a) using a neural network

$$\mathcal{L} = \frac{1}{2} E[(f(\vec{s}_t, \vec{a}_t) - Q_{local}(\vec{s}_t, \vec{a}_t))^2]$$

$$Q_{local}(\vec{s}_t, \vec{a}_t) = R_t(\vec{s}_t) + \gamma \max_{\vec{a}'} f(\vec{s}_{t+1}, \vec{a}')$$