# CS 440/ECE448 Lecture 32: Model-Based Reinforcement Learning

Mark Hasegawa-Johnson, 4/2024

These slides are in the public domain.



By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

### Outline

- Reinforcement learning
- Model-based learning
- On-policy vs. Off-policy learning
- Exploration vs. Exploitation

### Review: Markov Decision Process

- MDP defined by states, actions, transition model, reward function
- The "solution" to an MDP is the policy: what do you do when you're in any given state
- The Bellman equation tells the utility of any given state, and incidentally, also tells you the optimum policy. The Bellman equation is N nonlinear equations in N unknowns (the policy), therefore it can't be solved in closed form.
- Value iteration:
  - At the beginning of the (i+1)'st iteration, each state's value is based on looking ahead i steps in time
  - ... so finding the best action = optimize based on (i+1)-step lookahead
- Policy iteration:
  - Find the utilities that result from the current policy,
  - Improve the current policy

# Reinforcement learning: Basic scheme

But what if you don't know P(s'|s, a) or r(s)?

Answer: "learning by doing" (a.k.a. reinforcement learning). In each time step:

- Take some action
- Observe the outcome of the action: successor state and reward
- Update some internal representation of the environment and policy

# Key problems 1. What should you learn?

- Model-based learning: P(s'|s, a) is estimated using a neural network or probability table, then use value iteration or policy iteration to find the best policy
- Q-learning: Q(s, a), the quality of action a, is estimated using a neural network or a table of numbers, and directly specifies the best action
- Policy learning:  $\pi(s)$ , the policy, is directly estimated using a neural network or a table

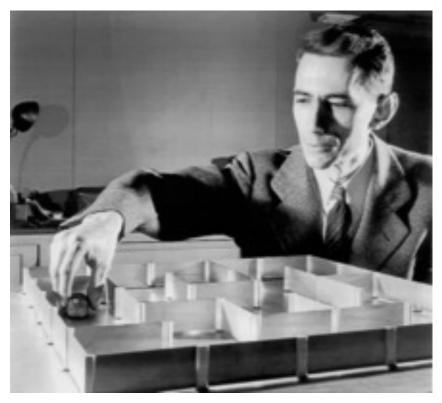
# Key problems, 2. In which order should you study the states?

- Real-time learning
  - In state  $s_t$ , try action  $a_t$ , see what reward  $r_t$  state  $s_{t+1}$  results, and immediately update your estimates of  $r(s_t)$  and  $P(s_{t+1}|s_t, a_t)$
- Experience replay buffer
  - In state  $s_t$ , try action  $a_t$ , see what reward  $r_t$  state  $s_{t+1}$  results, and store the tuple  $(s_t, a_t, r_t, s_{t+1})$  in an experience replay buffer
  - When the experience replay buffer is full, learn by drawing samples from it according to some criterion that optimizes the rate at which you learn

# Key problems, 3. Which actions should you perform while learning?

- On-policy vs. Off-policy learning:
  - On-policy: For each  $\pi(s)$ , try it, and learn  $P(s'|s, a = \pi(s))$
  - Off-policy: Try to learn the values of all possible actions
- Exploration vs. Exploitation
  - Exploration: try actions at random, to see what happens
  - Exploitation: try to act optimally (to maximize value)

# Example of model-based reinforcement learning: Theseus the Mouse



<u>Claude Shannon and Theseus the Mouse</u>. Public domain image, Bell Labs.

https://www.youtube.com/watch?v=\_9\_AEVQ\_p74

# Model-based reinforcement learning: Theseus' strategy



Learning phase:

- At each position in the maze (s),
  - For every possible action  $a \in \{Forward, Left, Right, Back\}$ :
    - If the action succeeded in changing the state  $(s' \neq s)$ , then set P(s'|s, a) = 1
    - If not, set P(s'|s, a) = 0 for all  $s' \neq s$

Once you've learned the maze, then compute the best policy  $(\pi(s))$  using Value Iteration.

• If  $P(s'|s, a) \in \{0, 1\}$ , Value Iteration = BFS

# Outline

- Reinforcement learning
- Model-based learning
- On-policy vs. Off-policy learning
- Exploration vs. Exploitation

#### On-policy learning: Laplace smoothing

- Let's keep a table of numbers, N(s, a, s'), telling how many times action a in state s led to next-state s'
- At time t, in state  $s_t$ , choose action  $a_t$ , observe  $r_t$  and  $s_{t+1}$ , update:

$$N(s_t, a_t, s_{t+1}) += 1$$

$$P(s_{t+1}|s_t, a_t) = \frac{N(s_t, a_t, s_{t+1}) + \lambda}{\sum_{s' \in S} N(s_t, a_t, s') + \lambda |S|}$$

• **On-policy learning**: we only update  $P(s_{t+1}|s_t, a_t)$  corresponding to the action that we performed. We don't learn anything about other actions.

#### On-policy learning: Neural network

• Estimate the probability table using a softmax:

$$P(\mathbf{s}'|\mathbf{s}, a) = \frac{\exp(\mathbf{s}^T \mathbf{W}_a \mathbf{s}')}{\sum_{s'' \in \mathcal{S}} \exp(\mathbf{s}^T \mathbf{W}_a \mathbf{s}'')}$$

• At time *t*, in state  $s_t$ , choose action  $a_t$ , observe  $s_{t+1}$ , update:

$$\boldsymbol{W}_{a_t} \leftarrow \boldsymbol{W}_{a_t} - \eta \nabla_{\boldsymbol{W}_{a_t}} \ln P(\boldsymbol{s}_{t+1} | \boldsymbol{s}_t, a_t)$$

• **On-policy learning**: we only update  $P(s_{t+1}|s_t, a_t)$  corresponding to the action that we performed. We don't learn anything about other actions.

### Off-policy learning: Neural network

• Estimate the probability table using a softmax:

$$P(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) = \frac{\exp([\boldsymbol{s}^T, \boldsymbol{a}^T]\boldsymbol{W}\boldsymbol{s}')}{\sum_{\boldsymbol{s}'' \in \mathcal{S}} \exp([\boldsymbol{s}^T, \boldsymbol{a}^T]\boldsymbol{W}\boldsymbol{s}'')}$$

- At time *t*, in state  $s_t$ , choose action  $a_t$ , observe  $s_{t+1}$ , update:  $W \leftarrow W - \eta \nabla_W \ln P(s_{t+1}|s_t, a_t)$
- Off-policy learning: By updating W, we modify P(s'|s, a) for all actions, not just for the one that we performed.

# Benefits of On-policy vs. Off-policy learning

- Off-policy learning can converge more quickly because we update P(s'|s, a) for all actions, not just for the one that we performed.
- ...However, off-policy learning might converge to the wrong answer! In the limit, we might be guessing the results of actions we *never* perform!
- Limiting ourselves to on-policy learning usually slows convergence but makes it more stable.

# Outline

- Reinforcement learning
- Model-based learning
- On-policy vs. Off-policy learning
- Exploration vs. Exploitation

# Exploration vs. Exploitation

- **Exploration:** take a new action with unknown consequences
  - Pros:
    - Get a more accurate model of the environment
    - Discover higher-reward states than the ones found so far
  - Cons:
    - When you're exploring, you're not maximizing your utility
    - Something bad might happen
- Exploitation: go with the best strategy found so far
  - Pros:
    - Maximize reward as reflected in the current utility estimates
    - Avoid bad stuff
  - Cons:
    - Might also prevent you from discovering the true optimal strategy

"Search represents a core feature of cognition:" <u>Exploration versus exploitation in space, mind, and society</u>.

## How to trade off exploration vs. exploitation

**Epsilon-first strategy**: when you reach state *s*, check how many times you've tested each of its available actions.

- Explore for the first  $N_{first}$  trials: If the least-explored action has been tested fewer than  $N_{first}$  times, then perform that action ( $N_{first}$  is an integer).
- **Exploit thereafter:** Once you've finished exploring, start exploiting (work to maximize your personal utility).

**Epsilon-greedy strategy**: in every state, every time, forever,

- With probability *ε*, Explore: choose any action, uniformly at random.
- <u>With probability  $(1 \epsilon)$ , Exploit</u>: choose the action with the highest expected utility, according to your current estimates.
- Guarantee: P(s'|s, a) converges to its true value as #trials  $\rightarrow \infty$ .

## The epsilon-first strategy

The "epsilon-first" strategy tries every action  $N_{first} = \frac{1}{\epsilon}$  times, where  $\epsilon$  is the desired modeling precision. For example, if we want  $|\hat{P}(s'|s,a) - P(s'|s,a)| < 0.1$ ... then we might set  $N_{first} = 10$ .\*



Claude Shannon and Theseus the Mouse. Public domain image, Bell Labs.

\* We can never guarantee that  $|\hat{P}(s'|s,a) - P(s'|s,a)| < \epsilon$  with 100% confidence, but using  $1/\epsilon$  trials is enough to be pretty confident. If you've taken ECE 313 or CS 361, you should be able to work out the relationship more precisely.

# The epsilon-first strategy

As you wander through the maze, you reach some state, *s*.

- If there is any action, a, for which  $N(s, a) < 1/\epsilon$ , then try that action.
- If not, then use value iteration (with the current estimates of P(s'|s, a)) to decide what is the best action to take.



Claude Shannon and Theseus the Mouse. Public domain image, Bell Labs.

# The epsilon-first strategy

As you wander through the maze, you reach some state, *s*.

- If there is any action, a, for which  $N(s, a) < 1/\epsilon$ , then <u>explore</u> (= try the action, to see what it does).
- If not, then <u>exploit</u> your knowledge (choose the action that, according to your model, will lead to the highest utility).



Claude Shannon and Theseus the Mouse. Public domain image, Bell Labs.

## The epsilon-greedy strategy

Regardless of how few times or how many times you've been in state s: generate a uniform random number,  $z \in (0,1)$ .

- If  $z \le \epsilon$ , then <u>explore</u>. Choose an action, a, uniformly at random, and try it. See what s' results. Increment N(s, a) and N(s, a, s').
  - This happens with probability  $\epsilon$ .
- If  $z > \epsilon$ , then <u>exploit</u>. Use value iteration or policy iteration to figure out the best action in the current state, then do that action.
  - This happens with probability  $1 \epsilon$ .

#### Quiz

Try the quiz!

https://us.prairielearn.com/pl/course\_instance/147925/assessment/24 14902

# Compare: Epsilon-first and Epsilon-greedy For both: $P(s'|s, a) \approx \frac{N(s,a,s')}{N(s,a)}$

#### Advantages of Epsilon-first:

- In the beginning, when P(s'|s, a) is still inaccurate, we just try things at random (explore).
- We can choose the level of precision that's "enough" for us. When P(s'|s, a) reaches that point, we stop exploring, and instead, we focus on getting the biggest rewards possible (exploit).

#### Advantages of Epsilon-greedy:

- Gradually, over a series of many experiments,  $N(s, a) \rightarrow \infty$
- Therefore, as the number of experiments gets large,

$$\widehat{P}\left(s'|s,a\right) - P(s'|s,a)| \to 0$$

#### Outline

- Reinforcement learning
- Model-based learning

$$P(s_{t+1}|s_t, a_t) = \frac{N(s_t, a_t, s_{t+1}) + \lambda}{\sum_{s' \in \mathcal{S}} N(s_t, a_t, s') + \lambda |\mathcal{S}|}$$

• On-policy vs. Off-policy learning

$$W_{a_t} \leftarrow W_{a_t} - \eta \nabla_{W_{a_t}} \ln P(s_{t+1}|s_t, a_t)$$
$$W \leftarrow W - \eta \nabla_W \ln P(s_{t+1}|s_t, a_t)$$

- Exploration vs. Exploitation
  - Epsilon-first:  $N_{first} = \frac{1}{\epsilon}$
  - Epsilon-greedy: If  $z \le \epsilon$ , for random number  $z \in (0,1)$ , then explore