CS440/ECE448 Lecture 30: Markov Decision Processes

Mark Hasegawa-Johnson, 4/2023
These slides are in the public domain.

Grid World

Invented and drawn by Peter Abbeel and Dan
Klein, UC Berkeley CS 188

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration

How does an intelligent agent plan its actions?

- If there is no randomness: Use A* search to plan the best path
- If there is an adversary: Use alpha-beta search to find the best path
- If our measurements are affected by random noise: Use Kalman filter to get a better estimate of current position
- What if our movements are affected by randomness?

Example: Grid World

Invented by Peter Abbeel and Dan Klein

- Maze-solving problem: state is $s=(i, j)$, where $0 \leq i \leq 2$ is the row and $0 \leq j \leq 3$ is the column.
- The robot is trying to find its way to the diamond.
- If it reaches the diamond, it gets a reward of $R((0,3))=+1$ and the game ends.
- If it falls in the fire it gets a
 reward of $R((1,3))=-1$ and the game ends.

Example: Grid World

Invented by Peter Abbeel and Dan Klein
Randomness: the robot has shaky actuators. If it tries to move forward,

- With probability 0.8 , it succeeds
- With probability 0.1, it falls left
- With probability 0.1, it falls right

Markov Decision Process

A Markov Decision Process (MDP) is defined by:

- A set of states, $s \in \mathcal{S}$
- A set of actions, $a \in \mathcal{A}$
- A transition model, $P\left(S_{t+1}=s_{t+1} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)$
- S_{t} is the state at time t
- A_{t} is the action taken at time t
- A reward function, $R(s)$

Solving an MDP: The Policy

- The solution to a maze is a path: the shortest path from start to goal
- In MDP, finding 1 path is not enough: randomness might cause us to accidentally deviate from the optimal path.

Solving an MDP: The Policy

- Since P and R depend only on the state (the model is Markov), a complete solution can be expressed as follows:
- What is the best action to take in any given state?
- A policy, $a=\pi(s)$, is a function telling you, for any state s, what is the best action to take in that state.

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration

Utility

The utility of a state, $\mathrm{U}(\mathrm{s})$, is defined to be:

- the sum of all current and future rewards that can be achieved if we start in state s,
- ...if we choose the best possible sequence of actions,
- ...and if we average over all possible results of those actions.

Example: Game show

- You've been offered a spot as a contestant in a game show.
- Reward: you receive successively larger prizes for each question you answer correctly, but if you answer any question incorrectly, you lose it all.
- Transition: the questions become harder and harder to answer.
- Actions: after each question, you can decide whether to take another question, or stop.

Example: Game show

Policy:

- If you've correctly answered $\mathrm{N}-1$ questions, should you attempt question QN, or stop?

Example: Game show

Policy $\pi(Q 4)$: If you've correctly answered 3 questions, should you attempt question Q4, or stop?

- If you stop: total reward is $\$ 11,100$
- If you attempt Q4: expected total reward is $\frac{1}{10} \times 61100+\frac{9}{10} \times 0=\$ 6110$ Policy: $\pi(Q 4)=$ stop.

Utility: $U(Q 4)=\$ 11,100$

Example: Game show

Policy $\pi(Q 3)$: If you've correctly answered 2 questions, should you attempt question Q3, or stop?

- If you stop: total reward is $\$ 1,100$
- If you attempt Q3: expected total reward is $\frac{1}{2} \times \$ 11,100+\frac{1}{2} \times 0=\$ 5550$ Policy: $\pi(Q 3)=$ continue. Utility: $U(Q 3)=\$ 5550$

Example: Game show

Policy $\pi(Q 2)$: If you've correctly answered 1 question, should you attempt question Q2, or stop?

- If you stop: total reward is $\$ 100$
- If you attempt Q2: expected total reward is $\frac{3}{4} \times \$ 5550+\frac{1}{4} \times 0=\$ 4162.50$ Policy: $\pi(Q 2)=$ continue. Utility: $U(Q 2)=\$ 4162.50$

Example: Game show

Policy $\pi(Q 1)$: If you've correctly answered no questions, then you have nothing to lose, so even though the chance of success is very small, you might as well try it!
Policy: $\pi(Q 1)=$ continue.
Utility: $U(Q 1)=\$ 41.63$

Utility

The utility of a state, $\mathrm{U}(\mathrm{s})$, is

- ...the maximum, over all possible sequences of actions, of
- ...the expected value, over all possible results of those actions, of
- ...the total of all future rewards.

$$
\begin{gathered}
U\left(s_{0}\right)= \\
R\left(s_{0}\right)+\max _{a_{0}} \sum_{s_{1}} P\left(s_{1} \mid s_{0}, a_{0}\right)\left(R\left(s_{1}\right)+\max _{a_{1}} \sum_{s_{2}} P\left(s_{2} \mid s_{1}, a_{1}\right)\left(R\left(s_{2}\right)+\cdots\right)\right)
\end{gathered}
$$

Utility

The utility of a state, $\mathrm{U}(\mathrm{s})$, is

- ...the maximum, over all possible sequences of actions, of
- ...the expected value, over all possible results of those actions, of
- ...the utility of the resulting state.

$$
U\left(s_{0}\right)=R\left(s_{0}\right)+\max _{a_{0}} \sum_{s_{1}} P\left(s_{1} \mid s_{0}, a_{0}\right) U\left(s_{1}\right)
$$

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration

Discount factor

You have just won a contest sponsored by the Galaxia Foundation. They offer you the choice of two options:

- $\$ 60,000$ right now, or...
- $\$ 1000$ per year, paid to you and your heirs annually forever.

Which option is better?

Discount factor

- Inflation has averaged 3.8% annually from 1960 to 2021.
- Equivalently, \$1000 received one year from now is worth approximately $\$ 962$ today.
- A reward of $\$ 1000$ annually forever (starting today, $\mathrm{t}=0$) is equivalent to an immediate reward of

$$
R=\sum_{t=0}^{\infty} 1000(0.962)^{t}=\frac{1000}{1-0.962}=\$ 26,316
$$

We call the factor $\gamma=0.962$ the discount factor.

Discount factor

Why is a dollar tomorrow worth less than a dollar today?

- A dollar will buy less tomorrow
- The person paying you might go out of business
- You might have to move to California hence you wouldn't be able to collect
The discount factor, γ, is our model of the unknowable uncertainty of promised future rewards.

Public domain image of J. Wellington Wimpy, the character who popularized the saying "I will gladly pay you Tuesday for a hamburger today."
https://commons.wikimedia.org/wiki/File:Wimpyh otdog.png

The Bellman Equation

$$
U\left(s_{0}\right)=R\left(s_{0}\right)+\gamma \max _{a_{0}} \sum_{s_{1}} P\left(s_{1} \mid s_{0}, a_{0}\right) U\left(s_{1}\right)
$$

- The Bellman equation specifies the utility of the current state.
- In solving the Bellman equation, we also find the optimum action, which is the policy.
- However...

The Bellman Equation

$$
U\left(s_{0}\right)=R\left(s_{0}\right)+\gamma \max _{a_{0}} \sum_{s_{1}} P\left(s_{1} \mid s_{0}, a_{0}\right) U\left(s_{1}\right)
$$

- The Bellman equation is N nonlinear equations in N unknowns
- N is the number of states
- $U(s)$ are the unknowns
- There is no closed-form solution; we must use an iterative solution

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration

Value iteration

The Bellman Equation:

$$
U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)
$$

Value iteration solves the Bellman equation iteratively. In iteration number i, for $i=0,1, \ldots$,

- For all states $s, U_{i}(s)$ is an estimate of $U(s)$
- Start out with $U_{0}(s)=0$ for all states
- In the $i^{\text {th }}$ iteration,

$$
U_{i}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U_{i-1}\left(s^{\prime}\right)
$$

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course instance/129874/assessment/23 40278
$\mathrm{Ui}-1(0)=0.1, \mathrm{Ui}-1(1)=-0.5, R(0)=R(1)=1$, gamma=0.6
$\mathrm{Ui}(0)=1+(0.6) \max ((0.6)(0.1)+(0.4)(-0.5),(0.8)(0.1)+(0.2)(-0.5))$
$\mathrm{Ui}(1)=1+(0.6) \max ($,
$\mathrm{Pi}(0)=1$

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration

Method 2: Policy Iteration

- Start with some initial policy π_{0} and alternate between the following steps:
- Policy Evaluation: calculate the utility of every state under the assumption that the given policy is fixed and unchanging, i.e, $U^{\pi}(s)$
- Policy Improvement: calculate a new policy π_{i+1} based on the updated utilities.
- Notice it's kind of like gradient descent in neural networks:
- Policy evaluation: Find ways in which the current policy is suboptimal
- Policy improvement: Fix those problems
- Unlike Value Iteration, this is guaranteed to converge in a finite number of steps, as long as the state space and action set are both finite.

Step 1: Policy Evaluation

Policy Evaluation: Given a fixed policy π, calculate the policy-dependent utility, $U^{\pi}(s)$, for every state s

$$
U^{\pi}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) U^{\pi}\left(s^{\prime}\right)
$$

Notice how this differs from the Bellman equation:

$$
U(s)=R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)
$$

The difference is that policy evaluation is N _linear_ equations in N unknowns, whereas the Bellman equation is N _nonlinear_ equations in N unknowns ($\mathrm{N}=\#$ states).

Example: Grid World

Policy Evaluation: $\quad U^{\pi^{0}}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U^{\pi^{0}}\left(s^{\prime}\right)$

- Assume a "loitering penalty" of $R(s)=-0.04$ for all non-terminal states
- Assume the initial policy is $\pi^{0}(s)=$ Right for all states
- Solve the linear equations to find $U^{\pi^{0}}(s)$ for all states

Step 2: Policy Improvement

- Policy Evaluation: Given a fixed policy π, calculate the policy-dependent utility, $U^{\pi}(s)$, for every state s

$$
U^{\pi}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) U^{\pi}\left(s^{\prime}\right)
$$

- Policy Improvement: Given $U^{\pi}(s)$ for every state s, find an improved $\pi(s)$

$$
\pi^{i+1}(s)=\underset{a \in A(s)}{\arg \max } \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U^{\pi_{i}}\left(s^{\prime}\right)
$$

Policy Improvement: Iteration 1
Policy Evaluation: $U^{\pi_{0}}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi_{0}(s)\right) U^{\pi_{0}}\left(s^{\prime}\right)$
Policy Improvement: $\pi_{1}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U^{\pi_{0}}\left(s^{\prime}\right)$

$U^{\pi_{0}}(S)$

+0.50	+0.69	+0.74	
-0.65		-0.90	
-1.40	-1.44	-1.39	-1.40

$\pi_{0}(S)$			
\rightarrow	\rightarrow	\rightarrow	
\rightarrow		\rightarrow	
\rightarrow	\rightarrow	\rightarrow	\rightarrow

Summary

- MDP defined by states, actions, transition model, reward function
- The "solution" to an MDP is the policy: what do you do when you're in any given state
- The Bellman equation tells the utility of any given state, and incidentally, also tells you the optimum policy. The Bellman equation is N nonlinear equations in N unknowns (the policy), therefore it can't be solved in closed form.
- Value iteration:
- At the beginning of the (i+1)'st iteration, each state's value is based on looking ahead i steps in time
- ... so finding the best action = optimize based on (i+1)-step lookahead
- Policy iteration:
- Find the utilities that result from the current policy,
- Improve the current policy

