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How does an intelligent agent plan its 
actions?
• If there is no randomness: Use A* search to plan the best path
• If there is an adversary: Use alpha-beta search to find the best path
• If our measurements are affected by random noise: Use Kalman filter 

to get a better estimate of current position
• What if our movements are affected by randomness?



Example: Grid World
Invented by Peter Abbeel and Dan Klein

• Maze-solving problem: state is 
𝑠 = (𝑖, 𝑗), where 0 ≤ 𝑖 ≤ 2 is 
the row and 0 ≤ 𝑗 ≤ 3 is the 
column.  
• The robot is trying to find its way 

to the diamond.
• If it reaches the diamond, it gets 

a reward of 𝑅((0,3)) = +1 and 
the game ends.
• If it falls in the fire it gets a 

reward of 𝑅((1,3)) = −1 and 
the game ends.



Example: Grid World
Invented by Peter Abbeel and Dan Klein

Randomness: the robot has shaky 
actuators.  If it tries to move 
forward,
• With probability 0.8, it succeeds
• With probability 0.1, it falls left
• With probability 0.1, it falls right 0.8 0.10.1

Source: P. Abbeel and D. Klein 



Markov Decision Process

A Markov Decision Process (MDP) is defined by:
• A set of states, 𝑠 ∈ 𝒮
• A set of actions, 𝑎 ∈ 𝒜
• A transition model, 𝑃(𝑆!"# = 𝑠!"#|𝑆! = 𝑠! , 𝐴! = 𝑎!)

• 𝑆! is the state at time t
• 𝐴! is the action taken at time t

• A reward function, 𝑅(𝑠)



Solving an MDP: The Policy

• The solution to a maze is a path: the shortest path from start to goal
• In MDP, finding 1 path is not enough: randomness might cause us to 

accidentally deviate from the optimal path.



Solving an MDP: The Policy

• Since P and R depend only on the 
state (the model is Markov), a 
complete solution can be 
expressed as follows:
• What is the best action to take in 

any given state?
• A policy, 𝑎 = 𝜋(𝑠), is a function 

telling you, for any state 𝑠, what is 
the best action to take in that 
state.  
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Utility

The utility of a state, U(s), is 
defined to be:
• the sum of all current and future 

rewards that can be achieved if 
we start in state s,
• …if we choose the best possible 

sequence of actions, 
• …and if we average over all 

possible results of those actions.



Example: Game show
• You’ve been offered a spot as a contestant in a game show.
• Reward: you receive successively larger prizes for each question you answer 

correctly, but if you answer any question incorrectly, you lose it all.
• Transition: the questions become harder and harder to answer.
• Actions: after each question, you can decide whether to take another 

question, or stop.
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Example: Game show
Policy:
• If you’ve correctly answered N-1 questions, should you attempt question 

QN, or stop?
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Example: Game show
Policy 𝜋(𝑄4):  If you’ve correctly answered 3 questions, should you attempt 
question Q4, or stop?
• If you stop: total reward is $11,100

• If you attempt Q4: expected total reward is  #
#$
×61100 + %

#$
×0 = $6110

Policy: 𝜋 𝑄4 = stop.                        Utility: 𝑈(𝑄4) = $11,100
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Example: Game show
Policy 𝜋(𝑄3):  If you’ve correctly answered 2 questions, should you attempt 
question Q3, or stop?
• If you stop: total reward is $1,100

• If you attempt Q3: expected total reward is  #
&
×$11,100 + #

&
×0 = $5550

Policy: 𝜋 𝑄3 = continue.                        Utility: 𝑈(𝑄3) = $5550
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Example: Game show
Policy 𝜋(𝑄2):  If you’ve correctly answered 1 question, should you attempt 
question Q2, or stop?
• If you stop: total reward is $100

• If you attempt Q2: expected total reward is  '
(
×$5550 + #

(
×0 = $4162.50

Policy: 𝜋 𝑄2 = continue.                        Utility: 𝑈(𝑄2) = $4162.50
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Example: Game show
Policy 𝜋(𝑄1):  If you’ve correctly answered no questions, then you have 
nothing to lose, so even though the chance of success is very small, you 
might as well try it!
Policy: 𝜋 𝑄1 = continue.                        Utility: 𝑈(𝑄1) = $41.63
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Utility

The utility of a state, U(s), is 
• …the maximum, over all possible sequences of actions, of
• …the expected value, over all possible results of those actions, of
• …the total of all future rewards.
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Utility

The utility of a state, U(s), is 
• …the maximum, over all possible sequences of actions, of
• …the expected value, over all possible results of those actions, of
• …the utility of the resulting state.

𝑈 𝑠$ = 𝑅 𝑠$ +max
)!

M
*"

𝑃 𝑠#|𝑠$, 𝑎$ 𝑈 𝑠#
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Discount factor

You have just won a contest sponsored by the Galaxia Foundation.  
They offer you the choice of two options:
• $60,000 right now, or…
• $1000 per year, paid to you and your heirs annually forever.

Which option is better?



Discount factor

• Inflation has averaged 3.8% annually from 1960 to 2021.
• Equivalently, $1000 received one year from now is worth 

approximately $962 today.
• A reward of $1000 annually forever (starting today, t=0) is equivalent 

to an immediate reward of

𝑅 =M
!+$

,

1000(0.962)! =
1000

1 − 0.962
= $26,316

We call the factor 𝛾 = 0.962 the discount factor.



Discount factor

Why is a dollar tomorrow worth less than a 
dollar today?
• A dollar will buy less tomorrow
• The person paying you might go out of 

business
• You might have to move to California hence 

you wouldn’t be able to collect
The discount factor, 𝛾 , is our model of the 
unknowable uncertainty of promised future 
rewards.

Public domain image of J. Wellington Wimpy, 
the character who popularized the saying “I will 
gladly pay you Tuesday for a hamburger today.” 

https://commons.wikimedia.org/wiki/File:Wimpyh
otdog.png

https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png
https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png


The Bellman Equation

𝑈 𝑠$ = 𝑅 𝑠$ + 𝛾max
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• The Bellman equation specifies the utility of the current state.
• In solving the Bellman equation, we also find the optimum action, which is 

the policy.
• However…



The Bellman Equation

𝑈 𝑠$ = 𝑅 𝑠$ + 𝛾max
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• The Bellman equation is N nonlinear equations in N unknowns
• N is the number of states
• U(s) are the unknowns
• There is no closed-form solution; we must use an iterative solution
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Value iteration

The Bellman Equation:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑈 𝑠′

Value iteration solves the Bellman equation iteratively.  In iteration number 𝑖, 
for 𝑖 = 0,1, …, 
• For all states 𝑠, 𝑈$(𝑠) is an estimate of 𝑈(𝑠)
• Start out with 𝑈% 𝑠 = 0 for all states
• In the 𝑖&' iteration,

𝑈$(𝑠) = 𝑅 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑈$()(𝑠′)



Quiz

Try the quiz!
https://us.prairielearn.com/pl/course_instance/129874/assessment/23
40278
Ui-1(0)=0.1, Ui-1(1)=-0.5, R(0)=R(1)=1, gamma=0.6
Ui(0)=1+(0.6)max((0.6)(0.1)+(0.4)(-0.5),(0.8)(0.1)+(0.2)(-0.5))
Ui(1)=1+(0.6)max(,)
Pi(0)=1

https://us.prairielearn.com/pl/course_instance/129874/assessment/2340278
https://us.prairielearn.com/pl/course_instance/129874/assessment/2340278
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Method 2: Policy Iteration

• Start with some initial policy p0 and alternate between the following steps:
• Policy Evaluation: calculate the utility of every state under the assumption that the 

given policy is fixed and unchanging, i.e, 𝑈$ 𝑠
• Policy Improvement: calculate a new policy pi+1 based on the updated utilities.

• Notice it’s kind of like gradient descent in neural networks:
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite number of 
steps, as long as the state space and action set are both finite.



Step 1: Policy Evaluation
Policy Evaluation: Given a fixed policy p, calculate the policy-dependent 
utility, Up(s), for every state s

Notice how this differs from the Bellman equation:

The difference is that policy evaluation is N _linear_ equations in N 
unknowns, whereas the Bellman equation is N _nonlinear_ equations in N 
unknowns (N=# states).
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Example: Grid World
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Policy Evaluation:

• Assume a “loitering penalty” of R(s)=-0.04 for all non-terminal states
• Assume the initial policy is 𝜋$ 𝑠 = Right for all states
• Solve the linear equations to find 𝑈-! 𝑠 for all states



Step 2: Policy Improvement
• Policy Evaluation: Given a fixed policy p, calculate the policy-dependent 

utility, Up(s), for every state s

• Policy Improvement: Given Up(s) for every state s, find an improved p(s)
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Policy Improvement: Iteration 1
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Policy Evaluation:

Policy Improvement:



Summary
• MDP defined by states, actions, transition model, reward function
• The “solution” to an MDP is the policy: what do you do when you’re in any 

given state
• The Bellman equation tells the utility of any given state, and incidentally, also 

tells you the optimum policy.   The Bellman equation is N nonlinear equations 
in N unknowns (the policy), therefore it can’t be solved in closed form.
• Value iteration: 

• At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i 
steps in time

• … so finding the best action = optimize based on (i+1)-step lookahead
• Policy iteration:

• Find the utilities that result from the current policy,
• Improve the current policy


