
CS440/ECE448 Lecture 30:
Markov Decision Processes

Mark Hasegawa-Johnson, 4/2023
These slides are in the public domain.

Grid World
Invented and drawn by Peter Abbeel and Dan

Klein, UC Berkeley CS 188

Outline

• Problem statement
• Utility
• The discount factor
• Value Iteration
• Policy Iteration

How does an intelligent agent plan its
actions?
• If there is no randomness: Use A* search to plan the best path
• If there is an adversary: Use alpha-beta search to find the best path
• If our measurements are affected by random noise: Use Kalman filter

to get a better estimate of current position
• What if our movements are affected by randomness?

Example: Grid World
Invented by Peter Abbeel and Dan Klein

• Maze-solving problem: state is
𝑠 = (𝑖, 𝑗), where 0 ≤ 𝑖 ≤ 2 is
the row and 0 ≤ 𝑗 ≤ 3 is the
column.
• The robot is trying to find its way

to the diamond.
• If it reaches the diamond, it gets

a reward of 𝑅((0,3)) = +1 and
the game ends.
• If it falls in the fire it gets a

reward of 𝑅((1,3)) = −1 and
the game ends.

Example: Grid World
Invented by Peter Abbeel and Dan Klein

Randomness: the robot has shaky
actuators. If it tries to move
forward,
• With probability 0.8, it succeeds
• With probability 0.1, it falls left
• With probability 0.1, it falls right 0.8 0.10.1

Source: P. Abbeel and D. Klein

Markov Decision Process

A Markov Decision Process (MDP) is defined by:
• A set of states, 𝑠 ∈ 𝒮
• A set of actions, 𝑎 ∈ 𝒜
• A transition model, 𝑃(𝑆!"# = 𝑠!"#|𝑆! = 𝑠! , 𝐴! = 𝑎!)

• 𝑆! is the state at time t
• 𝐴! is the action taken at time t

• A reward function, 𝑅(𝑠)

Solving an MDP: The Policy

• The solution to a maze is a path: the shortest path from start to goal
• In MDP, finding 1 path is not enough: randomness might cause us to

accidentally deviate from the optimal path.

Solving an MDP: The Policy

• Since P and R depend only on the
state (the model is Markov), a
complete solution can be
expressed as follows:
• What is the best action to take in

any given state?
• A policy, 𝑎 = 𝜋(𝑠), is a function

telling you, for any state 𝑠, what is
the best action to take in that
state.

Outline

• Problem statement
• Utility
• The discount factor
• Value Iteration
• Policy Iteration

Utility

The utility of a state, U(s), is
defined to be:
• the sum of all current and future

rewards that can be achieved if
we start in state s,
• …if we choose the best possible

sequence of actions,
• …and if we average over all

possible results of those actions.

Example: Game show
• You’ve been offered a spot as a contestant in a game show.
• Reward: you receive successively larger prizes for each question you answer

correctly, but if you answer any question incorrectly, you lose it all.
• Transition: the questions become harder and harder to answer.
• Actions: after each question, you can decide whether to take another

question, or stop.

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Example: Game show
Policy:
• If you’ve correctly answered N-1 questions, should you attempt question

QN, or stop?

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Example: Game show
Policy 𝜋(𝑄4): If you’ve correctly answered 3 questions, should you attempt
question Q4, or stop?
• If you stop: total reward is $11,100

• If you attempt Q4: expected total reward is #
#$
×61100 + %

#$
×0 = $6110

Policy: 𝜋 𝑄4 = stop. Utility: 𝑈(𝑄4) = $11,100

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Example: Game show
Policy 𝜋(𝑄3): If you’ve correctly answered 2 questions, should you attempt
question Q3, or stop?
• If you stop: total reward is $1,100

• If you attempt Q3: expected total reward is #
&
×$11,100 + #

&
×0 = $5550

Policy: 𝜋 𝑄3 = continue. Utility: 𝑈(𝑄3) = $5550

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Example: Game show
Policy 𝜋(𝑄2): If you’ve correctly answered 1 question, should you attempt
question Q2, or stop?
• If you stop: total reward is $100

• If you attempt Q2: expected total reward is '
(
×$5550 + #

(
×0 = $4162.50

Policy: 𝜋 𝑄2 = continue. Utility: 𝑈(𝑄2) = $4162.50

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Example: Game show
Policy 𝜋(𝑄1): If you’ve correctly answered no questions, then you have
nothing to lose, so even though the chance of success is very small, you
might as well try it!
Policy: 𝜋 𝑄1 = continue. Utility: 𝑈(𝑄1) = $41.63

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Utility

The utility of a state, U(s), is
• …the maximum, over all possible sequences of actions, of
• …the expected value, over all possible results of those actions, of
• …the total of all future rewards.

𝑈 𝑠$ =

𝑅 𝑠$ +max
)!

M
*"

𝑃 𝑠#|𝑠$, 𝑎$ 𝑅 𝑠# +max
)"

M
*#

𝑃 𝑠&|𝑠#, 𝑎# 𝑅 𝑠& +⋯

Utility

The utility of a state, U(s), is
• …the maximum, over all possible sequences of actions, of
• …the expected value, over all possible results of those actions, of
• …the utility of the resulting state.

𝑈 𝑠$ = 𝑅 𝑠$ +max
)!

M
*"

𝑃 𝑠#|𝑠$, 𝑎$ 𝑈 𝑠#

Outline

• Problem statement
• Utility
• The discount factor
• Value Iteration
• Policy Iteration

Discount factor

You have just won a contest sponsored by the Galaxia Foundation.
They offer you the choice of two options:
• $60,000 right now, or…
• $1000 per year, paid to you and your heirs annually forever.

Which option is better?

Discount factor

• Inflation has averaged 3.8% annually from 1960 to 2021.
• Equivalently, $1000 received one year from now is worth

approximately $962 today.
• A reward of $1000 annually forever (starting today, t=0) is equivalent

to an immediate reward of

𝑅 =M
!+$

,

1000(0.962)! =
1000

1 − 0.962
= $26,316

We call the factor 𝛾 = 0.962 the discount factor.

Discount factor

Why is a dollar tomorrow worth less than a
dollar today?
• A dollar will buy less tomorrow
• The person paying you might go out of

business
• You might have to move to California hence

you wouldn’t be able to collect
The discount factor, 𝛾 , is our model of the
unknowable uncertainty of promised future
rewards.

Public domain image of J. Wellington Wimpy,
the character who popularized the saying “I will
gladly pay you Tuesday for a hamburger today.”

https://commons.wikimedia.org/wiki/File:Wimpyh
otdog.png

https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png
https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png

The Bellman Equation

𝑈 𝑠$ = 𝑅 𝑠$ + 𝛾max
)!

M
*"

𝑃 𝑠#|𝑠$, 𝑎$ 𝑈 𝑠#

• The Bellman equation specifies the utility of the current state.
• In solving the Bellman equation, we also find the optimum action, which is

the policy.
• However…

The Bellman Equation

𝑈 𝑠$ = 𝑅 𝑠$ + 𝛾max
)!

M
*"

𝑃 𝑠#|𝑠$, 𝑎$ 𝑈 𝑠#

• The Bellman equation is N nonlinear equations in N unknowns
• N is the number of states
• U(s) are the unknowns
• There is no closed-form solution; we must use an iterative solution

Outline

• Problem statement
• Utility
• The discount factor
• Value Iteration
• Policy Iteration

Value iteration

The Bellman Equation:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑈 𝑠′

Value iteration solves the Bellman equation iteratively. In iteration number 𝑖,
for 𝑖 = 0,1, …,
• For all states 𝑠, 𝑈$(𝑠) is an estimate of 𝑈(𝑠)
• Start out with 𝑈% 𝑠 = 0 for all states
• In the 𝑖&' iteration,

𝑈$(𝑠) = 𝑅 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑈$()(𝑠′)

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course_instance/129874/assessment/23
40278
Ui-1(0)=0.1, Ui-1(1)=-0.5, R(0)=R(1)=1, gamma=0.6
Ui(0)=1+(0.6)max((0.6)(0.1)+(0.4)(-0.5),(0.8)(0.1)+(0.2)(-0.5))
Ui(1)=1+(0.6)max(,)
Pi(0)=1

https://us.prairielearn.com/pl/course_instance/129874/assessment/2340278
https://us.prairielearn.com/pl/course_instance/129874/assessment/2340278

Outline

• Problem statement
• Utility
• The discount factor
• Value Iteration
• Policy Iteration

Method 2: Policy Iteration

• Start with some initial policy p0 and alternate between the following steps:
• Policy Evaluation: calculate the utility of every state under the assumption that the

given policy is fixed and unchanging, i.e, 𝑈$ 𝑠
• Policy Improvement: calculate a new policy pi+1 based on the updated utilities.

• Notice it’s kind of like gradient descent in neural networks:
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite number of
steps, as long as the state space and action set are both finite.

Step 1: Policy Evaluation
Policy Evaluation: Given a fixed policy p, calculate the policy-dependent
utility, Up(s), for every state s

Notice how this differs from the Bellman equation:

The difference is that policy evaluation is N _linear_ equations in N
unknowns, whereas the Bellman equation is N _nonlinear_ equations in N
unknowns (N=# states).

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

Example: Grid World

→ → →

→ →

→ → → →

𝜋!(𝑠)

𝑈-!(𝑠) = 𝑅 𝑠 + 𝛾M
*.

𝑃 𝑠. 𝑠, 𝑎 𝑈-! 𝑠′

+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑈!6(𝑠)

Policy Evaluation:

• Assume a “loitering penalty” of R(s)=-0.04 for all non-terminal states
• Assume the initial policy is 𝜋$ 𝑠 = Right for all states
• Solve the linear equations to find 𝑈-! 𝑠 for all states

Step 2: Policy Improvement
• Policy Evaluation: Given a fixed policy p, calculate the policy-dependent

utility, Up(s), for every state s

• Policy Improvement: Given Up(s) for every state s, find an improved p(s)

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg

å
Î

+ =
')(

1)'(),|'(maxarg)(
ssAa

i sUassPs ipp

Policy Improvement: Iteration 1

→ → →

→ →

→ → → →

𝜋!(𝑠)

𝑈*!(𝑠) = 𝑅 𝑠 + 𝛾M
*.

𝑃 𝑠. 𝑠, 𝜋%(𝑠) 𝑈*! 𝑠′

→ → →

↑ ↑

↑ → ↑ ↑

𝜋"(𝑠)
+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑈!6(𝑠)

𝜋)(𝑠) = argmax
)

M
*.

𝑃 𝑠. 𝑠, 𝑎 𝑈*! 𝑠′

Policy Evaluation:

Policy Improvement:

Summary
• MDP defined by states, actions, transition model, reward function
• The “solution” to an MDP is the policy: what do you do when you’re in any

given state
• The Bellman equation tells the utility of any given state, and incidentally, also

tells you the optimum policy. The Bellman equation is N nonlinear equations
in N unknowns (the policy), therefore it can’t be solved in closed form.
• Value iteration:

• At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i
steps in time

• … so finding the best action = optimize based on (i+1)-step lookahead
• Policy iteration:

• Find the utilities that result from the current policy,
• Improve the current policy

