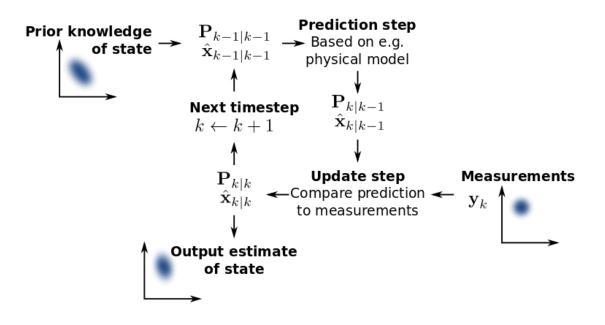
Lecture 29 Kalman Filter

Mark Hasegawa-Johnson
These slides are in the public domain



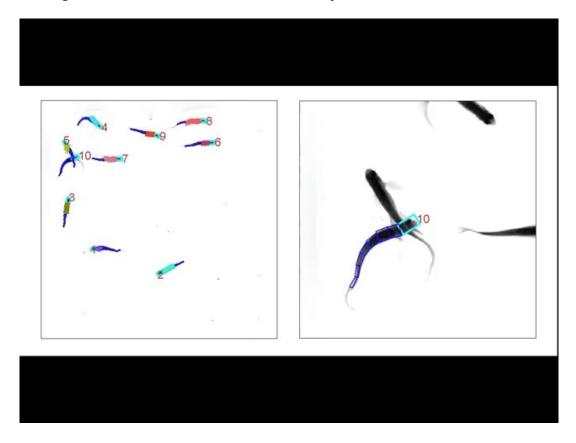
Public domain image,

https://commons.wikimedia.org/wiki/File:Basic concept of Kalman filtering.svg

Outline

- Tracking an object from noisy observations
- Prediction
- Update

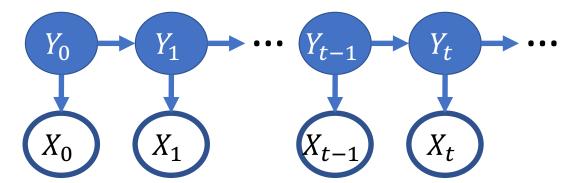
Tracking an object from noisy observations



CC-BY 4.0, https://commons.wikimedia.org/wiki/File:Automated-Planar-Tracking-the-Waving-Bodies-of-Multiple-Zebrafish-Swimming-in-Shallow-Water-pone.0154714.s001.ogv

Tracking an object from noisy observations

- Y_t = current position of the object
- X_t = noisy observation of the object
- Goal: find $p(y_t|x_0,...,x_t)$



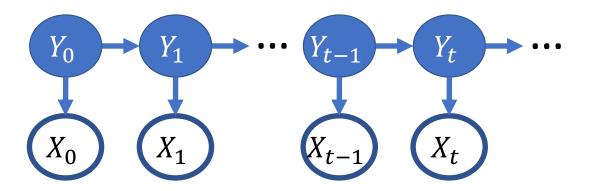
Outline

- Tracking an object from noisy observations
- Prediction
- Update

Prediction: Probability Distribution

- Suppose we already know $p(y_{t-1}|x_0,...,x_{t-1})$.
- Can we find $p(y_t|x_0, ..., x_{t-1})$?
- Yes:

$$p(y_t|x_0, \dots, x_{t-1}) = \sum_{y_{t-1}} p(y_{t-1}|x_0, \dots, x_{t-1}) p(y_t|y_{t-1})$$

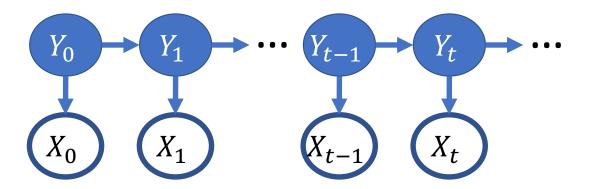


Prediction: Mean

What is its expected value?

$$E[Y_t|x_0,...,x_{t-1}] = E[Y_{t-1}|x_0,...,x_{t-1}] + E[\Delta]$$

... where $\Delta = Y_t - Y_{t-1}$ is the amount of movement in one second. For example, if an object is moving 10 m/s, then $E[\Delta] = 10$.



Prediction: Mean

Notation: define

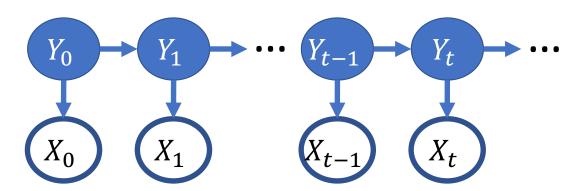
$$\mu_{t|t-1} = E[Y_t | x_0, ..., x_{t-1}]$$

$$\mu_{t-1|t-1} = E[Y_{t-1} | x_0, ..., x_{t-1}]$$

$$\mu_{\Delta} = E[\Delta]$$

Then if we already know $\mu_{t-1|t-1}$ and μ_{Δ} , we can find

$$\mu_{t|t-1} = \mu_{t-1|t-1} + \mu_{\Delta}$$

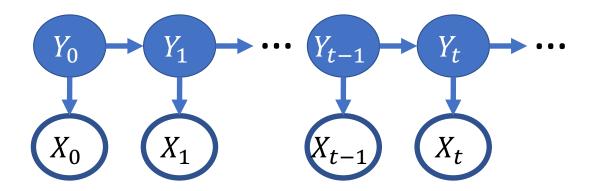


Prediction: Variance

What is its variance? If we assume that Δ and Y_{t-1} are independent, we get

$$Var(Y_t|x_0,...,x_{t-1}) = Var(Y_{t-1}|x_0,...,x_{t-1}) + Var(\Delta)$$

For example, the object might be moving at 10m/s, but its velocity might have a standard deviation of 2m/s, so $Var(\Delta) = 4$.

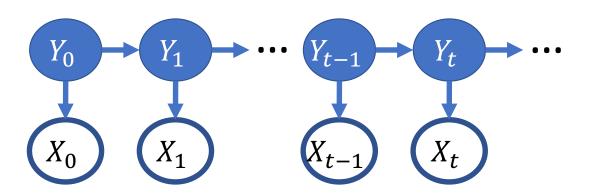


Prediction: Variance

Notation:

$$\begin{split} \sigma_{t|t-1}^2 &= \text{Var}(Y_t|x_0, ..., x_{t-1}) \\ \sigma_{t-1|t-1}^2 &= \text{Var}(Y_{t-1}|x_0, ..., x_{t-1}) \\ \sigma_{\Delta}^2 &= \text{Var}(\Delta) \end{split}$$

Then if we already know $\sigma_{t-1|t-1}^2$ and σ_{Δ}^2 , we can find $\sigma_{t|t-1}^2=\sigma_{t-1|t-1}^2+\sigma_{\Delta}^2$

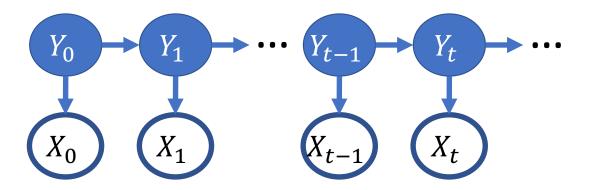


Prediction

If we know the object's location at time t-1, with some degree of uncertainty expressed by the variance $\sigma_{t-1|t-1}^2$, then we can guess where it will be at time t, with a slightly greater uncertainty caused by our uncertainty about its velocity:

$$\mu_{t|t-1} = \mu_{t-1|t-1} + \mu_{\Delta}$$

$$\sigma_{t|t-1}^2 = \sigma_{t-1|t-1}^2 + \sigma_{\Delta}^2$$



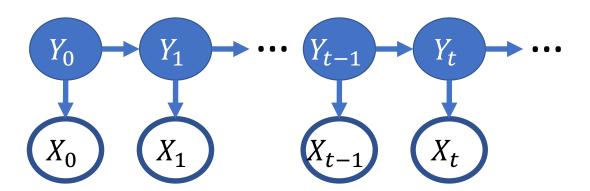
Outline

- Tracking an object from noisy observations
- Prediction
- Update

Update based on observations

The prediction step gave us $p(y_t|x_0,...,x_{t-1})$. Now suppose we have a new observation, x_t . Can we use the new observation to improve our estimate of y_t ?

In other words, can we find $p(y_t|x_0,...,x_{t-1},x_t)$?

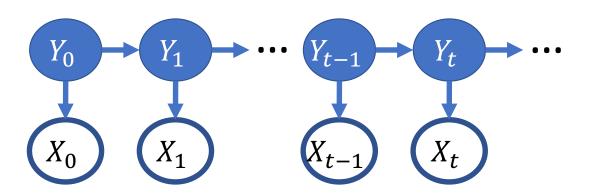


Kalman Filter: the independent noise assumption

• The Kalman filter assumes that Y_t is Gaussian, and that $X_t = Y_t + \epsilon$, where ϵ is some independent Gaussian measurement noise.

Under this assumption,

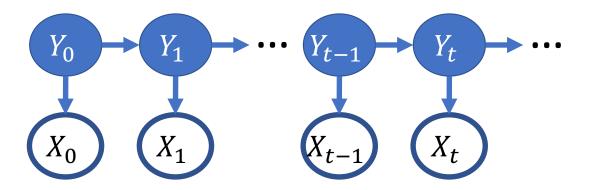
$$E[X_t | x_0, ..., x_{t-1}] = \mu_{t|t-1} + \mu_{\epsilon}$$
$$Var(X_t | x_0, ..., x_{t-1}) = \sigma_{t|t-1}^2 + \sigma_{\epsilon}^2$$



The Kalman gain

The ratio of the variances of Y_t and X_t is called the Kalman gain. It's the degree to which you trust the measurement x_t . The higher it is, the more you trust x_t :

$$k_{t} = \frac{\text{Var}(Y_{t}|x_{0}, \dots, x_{t-1})}{\text{Var}(X_{t}|x_{0}, \dots, x_{t-1})} = \frac{\sigma_{t|t-1}^{2}}{\sigma_{t|t-1}^{2} + \sigma_{\epsilon}^{2}}$$

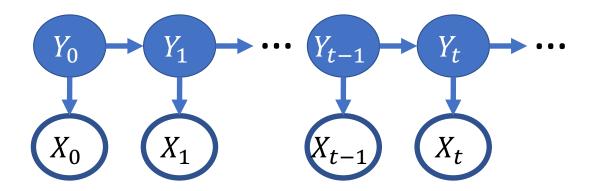


Kalman Filter: the update step

And here's the surprising result: k_t is all you need. If $X_t = Y_t + \epsilon$, and if Y_t and ϵ are Gaussian, then

$$\mu_{t|t} = E[Y_t | x_0, \dots, x_t] = \mu_{t|t-1} + k_t \left(x_t - \left(\mu_{t|t-1} + \mu_{\epsilon} \right) \right)$$

$$\sigma_{t|t}^2 = \text{Var}(Y_t | x_0, \dots, x_t) = \sigma_{t|t-1}^2 (1 - k_t)$$



The Kalman filter

• Prediction step: given $\mu_{t-1|t-1}$ and $\sigma^2_{t-1|t-1}$, we can predict where the fish might go at time t, but with increased uncertainty:

$$\mu_{t|t-1} = \mu_{t-1|t-1} + \mu_{\Delta}$$

$$\sigma_{t|t-1}^2 = \sigma_{t-1|t-1}^2 + \sigma_{\Delta}^2$$

• Update step: given the observation x_t , we can refine our estimate, and reduce our uncertainty:

$$k_{t} = \frac{\sigma_{t|t-1}^{2}}{\sigma_{t|t-1}^{2} + \sigma_{\epsilon}^{2}}$$

$$\mu_{t|t} = \mu_{t|t-1} + k_{t} \left(x_{t} - \left(\mu_{t|t-1} + \mu_{\epsilon} \right) \right)$$

$$\sigma_{t|t}^{2} = \sigma_{t|t-1}^{2} (1 - k_{t})$$

Quiz

• Try the quiz!

https://us.prairielearn.com/pl/course_instance/129874/assessment/2340212

Conclusion

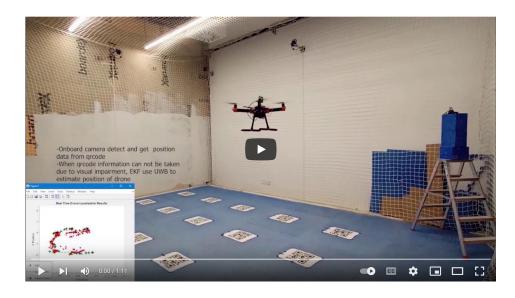
Prediction step: given $\mu_{t-1|t-1}$ and $\sigma_{t-1|t-1}^2$, we can predict where the fish might go at time t, but with increased uncertainty:

$$\mu_{t|t-1} = \mu_{t-1|t-1} + \mu_{\Delta}$$

$$\sigma_{t|t-1}^2 = \sigma_{t-1|t-1}^2 + \sigma_{\Delta}^2$$

Update step: given the observation x_t , we can refine our estimate, and reduce our uncertainty:

$$\begin{aligned} k_t &= \frac{\sigma_{t|t-1}^2}{\sigma_{t|t-1}^2 + \sigma_{\epsilon}^2} \\ \mu_{t|t} &= \mu_{t|t-1} + k_t \left(x_t - \left(\mu_{t|t-1} + \mu_{\epsilon} \right) \right) \\ \sigma_{t|t}^2 &= \sigma_{t|t-1}^2 (1 - k_t) \end{aligned}$$



Drone Localization based on Extended Kalman Filter (EKF) with UWB sensors and camera,

https://www.youtube.com/watch?v=kC8FgmhhSB8