Lecture 26： Exam 2 Review

Mark Hasegawa－Johnson

Slides are in the Public Domain： Re－mix，Re－use，Re－distribute at will

By 余壬，吳鈛描繪，徐顯卿題詠Yu Ren，Wu Yue－北京故宮博物院藏 《徐顯卿宦跡圖》 The Official Career of Xu Xianqing，Peking Palace Museum，Public Domain， https：／／commons．wikimedia．org／w／index．php？curid＝58327373

Overview

- Date, time, place; What to bring
- Material covered
- Search
- Minimax
- Al safety
- Theorem-proving
- Transparency
- HMM
- Transformers

Date, time, place

- Monday, April 3, 2023
- 1:00pm
- Here (Lincoln Hall Theater)
- Conflict exams: e-mail address is on course web page

What to bring

- One 8.5×11 (or A 4) sheet of notes, both sides, handwritten or printed in font comparable in size to handwriting
- Your UIUC ID
- Not allowed: calculator, computer, textbook, technological tutor

Overview

- Date, time, place; What to bring
- Material covered
- Search
- Minimax
- Al safety
- Theorem-proving
- Bayes network
- Transparency
- HMM
- Transformers

Search

Algorithm	Complete?	Optimal?	Time complexity	Space complexity	Implement the Frontier as a...
BFS	Yes	If all step costs are equal	$\mathcal{O}\left\{b^{d}\right\}$	$\mathcal{O}\left\{b^{d}\right\}$	Queue
DFS	No	No	$\mathcal{O}\left\{b^{m}\right\}$	$\mathcal{O}\{b m\}$	Stack
UCS	Yes	Yes	Number of nodes, n, with $g(n) \leq C^{*}$	Number of nodes, n, with $g(n) \leq C^{*}$	Priority Queue sorted by $g(n)$
Greedy	No	No	$\mathcal{O}\left\{b^{m}\right\}$	$\mathcal{O}\left\{b^{m}\right\}$	Priority Queue sorted by $\mathrm{h}(n)$
A*	Yes	Yes	Number of nodes, n, with $f(n) \leq C^{*}$	Number of nodes, n, with $f(n) \leq C^{*}$	Priority Queue sorted by $\mathrm{f}(n)$

$b=$ branching factor, $d=$ length of best path to goal, $m=$ length of longest path to anywhere,
$g(n)=$ cost of best path from start to node $\mathrm{n}, C^{*}=$ cost of best path to goal,
$h(n)=$ heuristic underestimate of best path from node n to goal, $f(n)=g(n)+h(n)$

A* search

- A* search: Using a heuristic to help choose which node to expand
- Proof that Dijkstra's algorithm is optimal:
- Expanding nodes in order of increasing cost \Rightarrow first time goal node is expanded it will have the smallest possible cost of any path to goal
- Heuristics that allow A^{*} to be optimal:
- Consistent: $h(p) \leq d(p, r)+h(r)$
- Admissible: $h(p) \leq d(p$, Goal $)$
- Design a consistent heuristic by relaxing constraints

Minimax

- Alternating two-player zero-sum games
- $\Lambda=$ a max node, $\mathrm{V}=$ a min node
- Minimax search
- Max: $v=\max (v$, child). Min: $v=\min (v$, child $)$
- Limited-horizon computation and heuristic evaluation functions

$$
v(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\cdots
$$

- Alpha-beta search
- Max: $v=\max (v$, child $), \alpha=\max (\alpha$, child), prune if $\alpha \geq \beta$.
- Min: $v=\min (v$, child $), \beta=\min (\beta$, child), prune if $\alpha \geq \beta$.
- Computational complexity of minimax and alpha-beta
- Minimax is $O\left\{b^{d}\right\}$. With optimal move ordering, alpha-beta is $O\left\{b^{d / 2}\right\}$.

Al Safety: Variance Network

Given a dataset of examples $D=\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$, the network has two outputs, $f_{1}(x)$ and $f_{2}(x)$, trained to minimize:

$$
\mathcal{L}=\frac{1}{n} \sum_{i=1}^{n}\left(f_{1}\left(x_{i}\right)-y_{i}\right)^{2}+\frac{1}{n-1} \sum_{i=1}^{n}\left(f_{2}\left(x_{i}\right)-\left(f_{1}\left(x_{i}\right)-y_{i}\right)^{2}\right)^{2}
$$

...learns to estimate the conditional mean and conditional variance:

$$
\begin{gathered}
f_{1}\left(x_{i}\right) \underset{n \rightarrow \infty}{\longrightarrow} E\left[Y \mid X=x_{i}\right] \\
f_{2}\left(x_{i}\right) \underset{n \rightarrow \infty}{\longrightarrow} \operatorname{Var}\left(Y \mid X=x_{i}\right)
\end{gathered}
$$

Unification

Given a proposition P written in terms of the variables \mathcal{V}_{P} and constants C, and a proposition Q written in terms of the variables \mathcal{V}_{Q} and constants C, unification is a process with two outcomes:

- Find a substitution $S:\left\{\mathcal{V}_{P}, \mathcal{V}_{Q}\right\} \rightarrow\left\{\mathcal{V}_{Q}, C\right\}$ such that
- $\mathrm{S}(P)=S(Q)=U$

... or prove that no such substitution exists.

Forward-chaining

Forward-chaining is a method of proving a theorem, T :

- Starting state: a database of known true propositions, $\mathcal{D}=$ $\left\{P_{1}, P_{2}, \ldots\right\}$
- Actions: the set of possible actions is defined by a set of rules, where each rule has the form $P \Rightarrow Q$.
- Neighboring states: if P_{1} unifies to P creating $S(P)=S\left(P_{1}\right)$, then create the new database $\mathcal{D}^{\prime}=\left\{P_{1}, P_{2}, \ldots, S(Q)\right\}$
- Termination: search terminates when we find a database containing T

Backward-chaining

Backward-chaining is a method of proving a theorem, T :

- Starting state: a goalset containing only one goal, the result to be proven, $\mathcal{G}=\{T\}$
- Actions: the set of possible actions is defined by rules of the form $P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n} \Rightarrow Q$
- Neighboring states: if Q unifies with some $Q^{\prime} \in \mathcal{G}$ producing $S(Q)=$ $S\left(Q^{\prime}\right)$ then:
- Remove Q^{\prime} from \mathcal{G}
- Replace it with $S\left(P_{1}\right) \wedge S\left(P_{2}\right) \wedge \cdots \wedge S\left(P_{n}\right)$
- Termination: search terminates if all propositions in the goalset are known to be true.

Bayesian Networks

- Bayesian network: Each variable is a node; An arrow between two nodes means that the child depends on the parent.
- Inference using a Bayesian network:

$$
\begin{aligned}
& P(B=T, J=T)=\sum_{e=T}^{F} \sum_{a=T}^{F} P(B \\
& =T) P(E=e) P(A=a \mid B=T, E=e) P(J=T \mid A=a)
\end{aligned}
$$

- Key ideas:
- Independent = no common ancestors
- Conditionally independent =(1) no common descendants, and (2) none of the descendants of one are ancestors of the other

Relevance scoring in neural networks

- Unnormalized relevance:

$$
\tilde{R}\left(f_{c}, x_{d}\right)=\frac{\partial f_{c}}{\partial x_{d}} x_{d} f_{c}
$$

- Normalized relevance:

$$
R\left(f_{c}, x_{d}\right)=\frac{\frac{\partial f_{c}}{\partial x_{d}} x_{d}}{\sum_{d^{\prime}} \frac{\partial f_{c}}{\partial x_{d \prime}} x_{d \prime}} f_{c}
$$

The summation is usually done over a layer, so that $\sum_{d} R\left(f_{c}, x_{d}\right)=f_{c}$ over each layer.

Hidden Markov Models

- HMM: Probabilistic reasoning over time

$$
\begin{gathered}
\pi_{i}=P\left(Y_{0}=i\right) \\
a_{i, j}=P\left(Y_{t}=j \mid Y_{t-1}=i\right) \\
b_{j}\left(x_{t}\right)=P\left(X_{t}=x_{t} \mid Y_{t}=j\right)
\end{gathered}
$$

- Viterbi algorithm

$$
\begin{gathered}
v_{t}(j)=\max _{i \in \mathcal{Y}} v_{t-1}(i) a_{i, j} b_{j}\left(x_{t}\right) \\
\psi_{t}(j)=\underset{i \in \mathcal{Y}}{\operatorname{argmax}} v_{t-1}(i) a_{i, j} b_{j}\left(x_{t}\right)
\end{gathered}
$$

Vector Semantics

- Skip-Gram:

$$
\mathcal{L}=-\frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=-c, j \neq 0}^{c} \ln P\left(w_{t+j} \mid w_{t}\right)
$$

- Continuous Bag of Words (CBOW):

$$
\mathcal{L}=-\frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=-c, j \neq 0}^{c} \ln P\left(w_{t} \mid w_{t+j}\right)
$$

- Softmax probability, Dot-product similarity:

$$
P\left(W_{t}=m \mid W_{t+j}=n\right)=\frac{\exp \left(v_{m} @ v_{n}\right)}{\sum_{m^{\prime}} \exp \left(v_{m^{\prime}} @ v_{n}\right)}
$$

- Train using SGD:

$$
v_{m} \leftarrow v_{m}-\eta \nabla_{v_{m}} \mathcal{L}=v_{m}+\frac{\eta}{T} \sum_{t: w_{t}=m} \sum_{j=-c, j \neq 0}^{c}\left(1-P\left(W_{t}=m \mid w_{t+j}\right)\right) v_{w_{t+j}}
$$

Transformer

- Stack up v_{t}, k_{t}, and q_{i} into matrices:

$$
v=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right], k=\left[\begin{array}{c}
k_{1} \\
\vdots \\
k_{n}
\end{array}\right], q=\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{m}
\end{array}\right]
$$

- $\alpha_{i, t}$ is the $\mathrm{t}^{\text {th }}$ output of a softmax whose input vector is $q_{i} @ k^{T}$:

$$
\alpha_{i, t}=\operatorname{softmax}_{t}\left(q_{i} @ k^{T}\right)=\frac{\exp \left(q_{i} @ k_{t}\right)}{\sum_{\tau} \exp \left(q_{i} @ k_{\tau}\right)}
$$

- c_{i} is the product of the vector softmax $\left(q_{i} @ k^{T}\right)$ times the v matrix:

$$
c_{i}=\operatorname{softmax}\left(q_{i} @ k^{T}\right) @ v=\sum_{t} \alpha_{i, t} v_{t}
$$

Overview

- Date, time, place; What to bring
- Material covered
- Search
- Minimax
- Al safety
- Theorem-proving
- Bayes Network
- Transparency
- HMM
- Transformers

