Lecture 24: Transformers

Mark Hasegawa-Johnson 3/2023

CCO Public Domain: Re-Use, ReMix, Re-distribute at will

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Self-training

Recurrent neural network

- In a recurrent neural network (RNN), the hidden node activation vector, h_{t}, depends on the value of the same vector at time $t-1$.
- From 2014-2017, the best speech recognition and machine translation used RNNs.
- The input is $x_{t}=$ speech or input-language text
- The output is $o_{t}=$ text in the target language

Example: Part of speech tagging

- $x_{t}=$ vector representation of the $\mathrm{t}^{\text {th }}$ word, e.g., trained using CBOW
- $h_{t}=$ hidden state vector
- $o_{t}=\operatorname{softmax}\left(h_{t} @ w\right)=\left[P\left(Y_{t}=\operatorname{Noun} \mid X_{1}, \ldots, X_{t}\right), P\left(Y_{t}=\operatorname{Verb} \mid X_{1}, \ldots, X_{t}\right), \ldots\right]$

Training an RNN

An RNN is trained using gradient descent, just like any other neural network!

$$
\begin{aligned}
u_{j, i} & \leftarrow u_{j, i}-\eta \frac{\partial \mathfrak{Q}}{\partial u_{j, i}} \\
w_{j, k} & \leftarrow w_{j, k}-\eta \frac{\partial \mathfrak{R}}{\partial w_{j, k}}
\end{aligned}
$$

... where \mathfrak{L} is the loss function, and η is a step size.

Training an RNN: Infinite recursion?

The big difference is that now the loss function depends on u, v and w in many different ways:

- The loss function depends on each of the state vectors h_{t}, which depends directly on u and v.
- But h_{t} also depends on h_{t-1}, which, in turn, depends on u and v.

- ... and so on.

Back-propagation through time

The solution is something called back-propagation through time:

$$
\frac{d \mathfrak{Q}}{d h_{i, t}}=\frac{\partial \mathfrak{R}}{\partial h_{i, t}}+\sum_{j} \frac{d \mathfrak{Q}}{d h_{j, t+1}} \frac{\partial h_{j, t+1}}{\partial h_{i, t}}
$$

- The first term measures losses caused directly by $h_{i, t}$, for
 example, if $o_{i, t}$ is wrong.
- The second term measures losses caused indirectly, for example, because $h_{i, t}$ caused $h_{j, t+1}$ to be wrong.

Back-propagation through time

Notice that this is just like training a very deep network!

- Back-propagation through time: back-propagate from time step $t+1$ to time step t
- Back-propagation in a very deep network: back-propagate from layer $l+1$ to layer l

Toolkits like PyTorch may use the same code in both cases.

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Self-training

The Cocktail-Party Effect

- If you are focusing on one person's voice, but hear your name spoken by another person, your attention immediately shifts to the second voice.
- This "cocktail-party effect" suggests a model of hearing in which all sounds are processed preconsciously. Trigger sounds in an unattended source will cause attention to re-orient to that source.

Bottom-up attention as a strategy for machine listening

- In 2014, researchers proposed that the past 200 ms of RNN state vectors should be stored in a "short-term memory buffer"
- A speech recognizer can attend to several centiseconds, all at one time, to decide what words it thinks it is hearing

FDHC0_SX209: Michael colored the bedroom wall with crayons.

Chorowski, Bahdanau, Serdyk, Cho \& Bengio, Attention-Based Models for Speech Recognition, Fig. 1

The Transformer: "Attention is all you need"

- In 2017, researchers proposed that the short-term memory buffer should contain raw signals, not processed signals.
- All processing is done using a model of bottom-up attention.

Attention: Key concepts

- The neural net needs to make a series of decisions, o_{i}
- Each decision needs to be based on some context, c_{i}
- Each context vector is a weighted sum of input values, $c_{i}=\sum_{t} \alpha_{i, t} v_{t}$
- $\alpha_{i, t}$ is the amount of attention that the output decision o_{i} is paying to the input value v_{t}. It is based on the similarity between a key vector, k_{t}, that describes the type of information available in v_{t}, and a query vector, q_{i}, that describes the type of information necessary in order to make the output decision

Inputs to an attention network

- Neural net inputs: a sequence of row vectors, x_{t}
- Neural net outputs: a sequence of row vectors, o_{i}
- Value: What type of information should x_{t} provide to the output? This may be just a linear transform of x_{t}, e.g.: $v_{t}=x_{t} @ w_{V}$
- Query: What type of information does o_{i} need? This may be just a linear transform of o_{i-1}, e.g.: $q_{i}=o_{i-1} @ w_{Q}$
- Key: The dot product $q_{i} @ k_{t}$ should be positive if v_{t} is useful, and negative if v_{t} is useless. This may be $k_{t}=x_{t} @ w_{K}$

Attention = a probability mass over time

- Attention is like probability: You only have a fixed amount of attention, so you need to decide how to distribute it.
- $\alpha_{i, t}=P\left(v_{t} \mid q_{i}\right)=$ the probability that v_{t} is the context that you need in order to make a decision related to the query vector q_{i}.

$$
\sum_{t} \alpha_{i, t}=1
$$

- Each output context vector $\left(c_{i}\right)$ is based on some input value vectors $\left(h_{t}\right)$. But which ones? Answer: decide which inputs to pay attention to, then pay attention.

$$
c_{i}=\sum_{t} \alpha_{i, t} v_{t}
$$

Dot-product attention

How can you decide which value vectors, v_{t} are most relevant to a particular query? Answer:

1. Create a key vector, k_{t}, such that $q_{i} @ k_{t}>0$ if v_{t} is relevant to q_{i}, otherwise $q_{i} @ k_{t}<0$.
2. Convert the similarity measures into a probability distribution using softmax:

By BenFrantzDale at the English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=49972362

$$
\alpha_{i, t}=\frac{\exp \left(q_{i} @ k_{t}\right)}{\sum_{\tau} \exp \left(q_{i} @ k_{\tau}\right)}
$$

Putting it all together

- Stack up v_{t}, k_{t}, and q_{i} into matrices:

$$
v=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right], k=\left[\begin{array}{c}
k_{1} \\
\vdots \\
k_{n}
\end{array}\right], q=\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{m}
\end{array}\right]
$$

- $\alpha_{i, t}$ is the $\mathrm{t}^{\text {th }}$ output of a softmax whose input vector is $q_{i} @ k^{T}$:

$$
\alpha_{i, t}=\operatorname{softmax}_{t}\left(q_{i} @ k^{T}\right)=\frac{\exp \left(q_{i} @ k_{t}\right)}{\sum_{\tau} \exp \left(q_{i} @ k_{\tau}\right)}
$$

- c_{i} is the product of the vector softmax $\left(q_{i} @ k^{T}\right)$ times the v matrix:

$$
c_{i}=\operatorname{softmax}\left(q_{i} @ k^{T}\right) @ v=\sum_{t} \alpha_{i, t} v_{t}
$$

Quiz!

- Try the quiz! https://us.prairielearn.com/pl/course_instance/129874/assessment/ 2337906

$$
\begin{gathered}
\exp \left(q_{i} @ k^{T}\right)=[0,0,0,1,0,0,1] \\
\alpha_{i, t}=\operatorname{softmax}\left(q_{i} @ k^{T}\right)=[0,0,0,0.5,0,0,0.5]
\end{gathered}
$$

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Self-training

Self-attention

Self-attention (literally!) adds context to each input vector:

$$
\begin{gathered}
q_{i}=x_{i} @ w_{Q} \\
k_{t}=x_{t} @ w_{K} \\
v_{t}=x_{t} @ w_{V} \\
c_{i}=\operatorname{softmax}\left(q_{i} @ k^{T}\right) @ v \\
y_{i}=x_{i}+c_{i}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Eositioding } \\
& \text { En }
\end{aligned}
$$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Multi-headed-attention

Multi-headed-attention uses 8 different w_{Q}, w_{K}, and w_{V} matrices, in order to get 8 different views of the input data:

$$
\begin{gathered}
q_{j, i}=x_{i} @ w_{j, Q}, \\
k_{j, t}=x_{t} @ w_{j, K}, \\
v_{j, t}=x_{t} @ w_{j, V}, \\
h_{j, i}=\operatorname{softmax}\left(q_{j, i} @ k_{j}^{T}\right) @ v_{j} \\
c_{i}=\left[h_{1, i}, \ldots, h_{8, i}\right] @ w_{O}
\end{gathered}
$$

Multi-Head Attention

Cross-attention

Cross-attention: query depends on preceding output, key and value depend on input:

$$
\begin{gathered}
q_{i}=o_{i-1} @ w_{Q} \\
k_{t}=x_{t} @ w_{K} \\
v_{t}=x_{t} @ w_{V} \\
c_{i}=\operatorname{softmax}\left(q_{i} @ k^{T}\right) @ v
\end{gathered}
$$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Masked attention

Masked attention forces c_{i} to pay attention to value vectors v_{t} only if $t<$ i :

$$
\begin{aligned}
& s\left(q_{i}, k_{t}\right)=\left\{\begin{array}{cc}
q_{i} @ k_{t} & t<i \\
-\infty & t \geq i
\end{array}\right. \\
& \alpha_{i, t}=\frac{\exp \left(s\left(q_{i}, k_{t}\right)\right)}{\sum_{\tau} \exp \left(s\left(q_{i}, k_{\tau}\right)\right)} \\
& =\left\{\begin{array}{cc}
\operatorname{softmax}\left(q_{i} @ k^{T}\right) & t<i \\
0 & t \geq i
\end{array}\right.
\end{aligned}
$$

Positional Encoding

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Cross-attention visualization

This plot shows $\alpha_{i, t}$ where $i=$ output character, and $t=$ input spectrum

FDHC0_SX209: Michael colored the bedroom wall with crayons.

Chorowski, Bahdanau, Serdyk, Cho \& Bengio, Attention-Based Models for Speech Recognition, Fig. 1

Word Error Rates using Transformers

By 9/2020, transformers had error rates of:

- 2\%: English, quiet recording conditions
- 4\%: Chinese or Japanese, quiet recording conditions
- 5-7\%: if the reference transcript has errors
- 14\%: 2-talker mixtures, synthetic reverberation
- 38\%: actual in-home recordings in noisy households

Table 1. CER/WER results on various open source ASR corpora. Both Transformer and Conformer models are implemented based on ESPnet toolkit. * marks ESPnet2 results. \dagger and \ddagger indicate only w/ speed or only w/ SpecAugment, respectively. \S denotes w/o any data augmentation.

Dataset	Vocab	Metric	Evaluation Sets	Transformer	Conformer
AIDATATANG	Char	CER	dev / test	(\dagger) $5.9 / 6.7$	4.3 / 5.0
AISHELL-1	Char	CER	$\mathrm{dev} / \mathrm{test}$	(\dagger) $6.0 / 6.7$	(*) 4.4 / 4.7
AISHELL-2	Char	CER	android / ios / mic	(\dagger) $8.9 / 7.5 / 8.6$	7.6 / 6.8 / 7.4
AURORA4	Char	WER	dev_0330 (A / B / C / D)	3.3 / 6.0 / 4.5 / 10.6	4.3 / $6.0 / 5.4 / 9.3$
CSJ	Char	CER	eval $\{1,2,3\}$	(*) $4.7 / 3.7 / 3.9$	(*) $4.5 / 3.3 / 3.6$
CHiME4	Char	WER	\{dt05, et05\}-\{simu, real\}	(\dagger) $9.6 / 8.2 / 15.7 / 14.5$	9.1 / 7.9 / 14.2 / 13.4
Fisher-CallHome	BPE	WER	dev / dev2 / test / devtest / evltest	$22.1 / 21.5$ / 19.9 / $38.1 / 38.2$	21.5 / 21.1 / 19.4 / 37.4 / 37.5
HKUST	Char	CER	dev	(\dagger) 23.5	(\dagger 22.2
JSUT	Char	CER	our split	(\dagger) 18.7	14.5
LibriSpeech	BPE	WER	\{dev, test ${ }_{\text {- }}$ \{clean, other $\}$	$2.1 / 5.3 / 2.5 / 5.5$	1.9 / 4.9 / 2.1 / 4.9
REVERB	Char	WER	et_\{near, far\}	(\dagger) $13.1 / 15.4$	(\dagger) 10.5 / 13.9
Switchboard	BPE	WER	eval2000 (callhm / swbd)	17.2 / 8.2	14.0 / 6.8
TEDLIUM2	BPE	WER	$\mathrm{dev} / \mathrm{test}$	9.3 / 8.1	8.6 / 7.2
TEDLIUM3	BPE	WER	dev / test	10.8 / 8.4	9.6 / 7.6
VoxForge	Char	CER	our split	(§) $9.4 / 9.1$	(§) 8.7 / 8.2
WSJ	BPE	WER	dev93/ eval92	($\ddagger 7.4$ / 4.9	(\ddagger) $7.7 / 5.3$
WSJ-2mix	Char	WER	tt	(§) 12.6	(§) 11.7

[^0]
Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Self-training

Label quality

- Audiobooks on librivox.org are readings of texts from Gutenberg.org.
- Often, readers make mistakes, or read different versions, or change the title enough to make it hard to know which Gutenberg text they read.
- Until 2020, speech technology was trained using "labeled data:"
- 400 hours of librivox books with verified transcripts ("Librispeech Clean")
- 600 hours of librivox books with acoustic noise or transcript errors ("Librispeech Other")

LibriVox
 free public domain audiobooks

Search by Author, Title or Reader

Free public domain audiobooks

Welcome to Project Gutenberg
Project Gutenberg is a library of over $\mathbf{6 0 , 0 0 0}$ free eBooks
Choose among free epub and Kindle eBooks, download them or read them online. You will find the world's great literature here, with focus on older works for which U.S. copyright has expired. Thousands of volunteers digitized and diligently proofread the eBooks, for you to enjoy.

Some of our latest eBooks Click Here for more latest books!

What do babies hear?

How much unlabeled speech does a baby hear?

- 2000-15000 words/day $=600-4500$ hours of speech by age 6 (Weisleder \& Fernald, 2013)

How much labeled speech does a baby hear?

- 30 (?) words/day accompanied by referential gestures $=9.1$ hours of speech by age 6

Is speech learned, or innate?

 (Hint: it's a trick question)

- 15 synthetic syllables, continuous from /ba/ to /da/ to /ga/
- same label \Rightarrow hard to tell if they are same sound or different sounds
- different labels \Rightarrow heard as obviously different

Categorical perception can be learned!

- People trained to categorize based on brightness show reduced within-category perceptual memory, and greater acrosscategory perceptual memory, for brightness, but size is perceived on a continuum.
- People trained to categorize based on size show reduced within-category perceptual memory, and greater across-category perceptual memory, for size, but brightness is perceived on a continuum.

Categorical perception as a cognitive bias

- If we categorize things, maybe we can remember them longer.
- In "The Magic Number Seven," Miller argued that people can be taught to categorize any continuum (pitch, taste, position, size) into seven categories, but not more.

Unsupervised pre-training of transformers based on categorical perception

- Given: 60,000 hours of speech, with no associated text.
- Suppose we train the neural network to form its own categories. What would make those categories speech-like?
- Context-Predictable Speech Categories: given the context (the quantized units t_{1}, t_{2}, and t_{6}), it should be possible to figure out what phonemes were masked (t_{3}, t_{4}, t_{5}).

Baevski, Auli \& Mohamed, 2019

Pre-training and Fine-tuning

- A transformer is pre-trained to create its own context-predictable speech categories using, say, 60,000 hours of speech
- Then it is fine-tuned using a few hours, or a few hundred hours, or labeled speech

By Fgpacini - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=123926277

Word Error Rates using Pre-Training

Pre-training makes it possible to achieve error rates of

- 4.4% using only 10 minutes of labeled data
- 2.6% using only 1 hour of labeled data

Model	Unlabeled Data	LM	dev-clean	dev-other	test-clean	test-other
		10-min labeled				
DiscreteBERT [52]	LS-960	4-gram	15.7	24.1	16.3	25.2
wav2vec 2.0 BASE [7]	LS-960	4-gram	8.9	15.7	9.1	15.6
wav2vec 2.0 LARGE [7]	LL-60k	4-gram	6.3	9.8	6.6	10.3
wav2vec 2.0 LARGE [7]	LL-60k	Transformer	4.6	7.9	4.8	8.2
HUBERT BASE	LS-960	4-gram	9.1	15.0	9.7	15.3
HUBERT LARGE	LL-60k	4-gram	6.1	9.4	6.6	10.1
HUBERT LARGE	LL-60k	Transformer	$\mathbf{4 . 3}$	7.0	4.7	7.6
HUBERT X-LARGE	LL-60k	Transformer	4.4	$\mathbf{6 . 1}$	$\mathbf{4 . 6}$	$\mathbf{6 . 8}$
		1-hour labeled				
DeCoAR 2.0 [51]	LS-960	4-gram	-	-	13.8	29.1
DiscreteBERT [52]	LS-960	4-gram	8.5	16.4	9.0	17.6
wav2vec 2.0 BASE [7]	LS-960	4-gram	5.0	10.8	5.5	11.3
wav2vec 2.0 LARGE [7]	LL-60k	Transformer	2.9	5.4	2.9	5.8
HUBERT BASE	LS-960	4-gram	5.6	10.9	6.1	11.3
HUBERT LARGE	LL-60k	Transformer	$\mathbf{2 . 6}$	4.9	2.9	5.4
HUBERT X-LARGE	LL-60k	Transformer	$\mathbf{2 . 6}$	$\mathbf{4 . 2}$	$\mathbf{2 . 8}$	$\mathbf{4 . 8}$

Outline

- Recurrent neural networks
- Attention

$$
c_{i}=\operatorname{softmax}\left(q_{i} @ k^{T}\right) @ v
$$

- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Self-training

[^0]: Guo, Boyer, Chang, Hayashi, Higuchi et al., ICASSP 2021, © IEEE

