
Lecture 23:
Vector

Semantics
Mark Hasegawa-Johnson

3/2023
CC0: Public domain. Re-

use, Remix, Redistribute at
will.

By Riclas - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=9076846

https://commons.wikimedia.org/w/index.php?curid=9076846

Outline

• What is a word? wordforms vs. lemmas vs. word senses
• What is meaning? synonymy, similarity, and relatedness
• Vector semantics: CBOW and skip-gram
• Generative training vs. Contrastive training
• Visualizations
• Bias

What is a
word?

What is a
word?
Is this a word?

What is a
word?
Is this a word?

Is this a
different word,
or the same
word?

Wordform

A wordform is a unique sequence of
characters.
• Wordforms are much easier for

computers to find than lemmas,
therefore most automatic
processing deals with wordforms.
• …however, we lose something.

“dog” and “dogs” become
completely unrelated – as
unrelated as “dog” and
“exaggerate.”

Lemma

A lemma is what humans usually
think of as a “word.” It is defined
to be the form of the word that
appears in a dictionary.
• Other wordforms that can be

easily predicted from the lemma
need not be listed.

What is a
word?
Is this a word?

Is this a
different word,
or the same
word?

Are these the
same word, or
different
words?

Word sense
Often, a word has different
meanings that are completely
unrelated. We think of them as
different words, that just happen
to be spelled and pronounced the
same way.
We say that these are different
“senses” of the same word.

The Bank of England. By Diliff - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40912212

The Bank of the Thames. By Diliff - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=3639626

Wordform, lemma, and word sense

• wordform
• easy for a computer to work with: just look for space-bounded sequences of

characters

• lemma
• This is what humans think of as a word. A cluster of wordforms whose

spellings, pronunciations, and meanings can all be derived from one another
by applying simple rules.

• word sense
• A meaning so distinct from the other meanings of the word that it’s hard to

consider them the same word.

Outline

• What is a word? wordforms vs. lemmas vs. word senses
• What is meaning? synonymy, similarity, and relatedness
• Vector semantics: CBOW and skip-gram
• Generative training vs. Contrastive training
• Visualizations
• Bias

Synonymy and similarity

• Words are “synonyms” if they
have exactly the same meaning.
• No words ever have exactly the

same meaning, so no two words
are ever exactly synonyms.
• We prefer to talk about word

similarity, 0 ≤ 𝑠(𝑤!, 𝑤") ≤ 1
• 𝑠 𝑤!, 𝑤" = 1: 𝑤! and 𝑤" are

perfect synonyms. Never happens
in practice, but sometimes close.

• 𝑠 𝑤!, 𝑤" = 0: 𝑤! and 𝑤" are
completely different.

𝑠 𝑤!, 𝑤"

(vanish, disappear)0.98

(behave, obey)0.73

(belief, impression)0.60

(muscle, bone)0.37

(modest, flexible)0.01
(hole, agreement)0.003

• Algorithms that try to estimate the similarity of two wordforms can be
tested on databases such as SimLex-999.
• Humans rated the similarity of each word pair on a 10-point scale.

Similarity vs.
Relatedness
Similar: words can be used
interchangeably in most
contexts
Related: there is some
connection between the
two words, such that they
tend to appear in the same
documents.

Similarity
coast
shore

0.9

H20
water

clothes
closet

0.9

Relatedness0.8

touchdown
piano

Outline

• What is a word? wordforms vs. lemmas vs. word senses
• What is meaning? synonymy, similarity, and relatedness
• Vector semantics: CBOW and skip-gram
• Generative training vs. Contrastive training
• Visualizations
• Bias

Review: Naïve Bayes: the “Bag-of-words” model
We can estimate the likelihood of an e-mail by pretending that the e-mail
is just a bag of words (order doesn’t matter).
With only a few thousand spam e-mails, we can get a pretty good estimate
of these things:

• 𝑃(𝑊 = “hi”|𝑌 = spam), 𝑃(𝑊 = “hi”|𝑌 = ham)
• 𝑃(𝑊 = “vitality”|𝑌 = spam), 𝑃(𝑊 = “vitality”|𝑌 = ham)
• 𝑃(𝑊 = “production”|𝑌 = spam), 𝑃(𝑊 = “production”|𝑌 = ham)

Then we can approximate 𝑃(𝑋|𝑌) by assuming that the words, 𝑊, are
conditionally independent of one another given the category label:

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈@
!"#

$

𝑃(𝑊 = 𝑤!|𝑌 = 𝑦) approved

prescription
foryou

vitality
hi

Similarity: The Internet is the database
Similarity = words can be used interchangeably in most contexts
How do we measure that in practice?
Answer: extract examples of word 𝑤!, +/- N words (N=2 or 3):

…hot, although iced coffee is a popular…
…indicate that moderate coffee consumption is benign…

…and of 𝑤":

…consumed as iced tea. Sweet tea is…
…national average of tea consumption in Ireland…

The words “iced” and “consumption” appear in both contexts, so we can conclude that
𝑠(coffea, tea) > 0. No other words are shared, so we can conclude 𝑠(coffee, tea) < 1.

skip-gram context probability

Consider the “…hot although iced coffee is a popular…”.
Define the target word to be 𝑤# =coffee.
Define the context words 𝑤$% =hot, 𝑤$" =although, …, 𝑤% =popular.
The skip-gram probability is a naïve Bayes model of the context:

𝑝 𝑤$%, … , 𝑤% 𝑤# = 2
&'#
&($%

%

𝑝(𝑤&|𝑤#)

The skip-gram model

• Skip-gram is a model of word meaning:
• The meaning of a word is defined to be the distribution of context

words that it can predict.
• We find out which words 𝑤) can predict by learning neural nets that

predict its context words 𝑤)*+:

ℒ = −
1
𝑇
7
)(#

,$!

7
+($-,+'#

-

ln 𝑃 𝑤)*+|𝑤)

The “continuous bag of
words” model (CBOW)

• CBOW is a similar model of word meaning:
• The meaning of a word is defined to be the distribution of context

words that predict it the best.
• We find out which words predict 𝑤) by learning neural nets that

predict 𝑤) given its context words, 𝑤)*+, for – 𝑐 ≤ 𝑗 ≤ 𝑐:

ℒ = −
1
𝑇
7
)(#

,$!

7
+($-,+'#

-

ln 𝑃 𝑤)|𝑤)*+

“Probability,” for a NN, means softmax

• What does it mean that we train a neural net to compute 𝑃 𝑤)|𝑤)*+ ?
• It’s a probability, so it must mean a softmax:

𝑃 𝑊) = 𝑚|𝑊)*+ = 𝑛 =
exp 𝑒/,0

∑/1 exp 𝑒/1,0

• But what are the inputs to the neural net? What is 𝑒/,0?

Vector Semantics

• The simplest useful assumption is this: a word is a vector.

𝑃 𝑊) = 𝑚|𝑊)*+ = 𝑛 =
exp 𝑣/@𝑣0

∑/1 exp 𝑣/1@𝑣0
• …where 𝑣/ is a d-dimensional vector, 𝑣/ = [𝑣/,#, … , 𝑣/,2$!]
• The only trainable parameters in this model are the word vectors!
• The dictionary, 𝑣 , is a matrix, with as many rows as there are words

in the vocabulary:

𝑣 =
𝑣3
⋮

𝑣444
=

𝑣3,# ⋯ 𝑣3,2$!
⋮ ⋱ ⋮

𝑣444,# ⋯ 𝑣444,2$!

cosine similarity
If words 𝑤! and 𝑤" are similar, 𝑤! is
represented by vector �⃗�!, and 𝑤" by vector
�⃗�", then the angle between the two vectors
should be small.
Angle between two vectors can be measured
by their dot product:

cos 𝜃 =
�⃗�!) �⃗�"
�⃗�! �⃗�"

where

�⃗�!) �⃗�" = *
#$%

&'!

𝑣!,#𝑣",# , �⃗�! = *
#$%

&'!

𝑣!,#"

By BenFrantzDale at the English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=49972362

Vector Semantics
There are many ways to make this model more flexible. For example:
• Every word could have two different vectors: one (𝑣)) for when it’s being

predicted, one (𝑐*) for when it is predicting, thus 𝑒),* = 𝑣)@𝑐*.
• We could put a delay-weight matrix, 𝑤+, in between the word vectors, thus
𝑒),+,* = 𝑣)@𝑤+@𝑐*.
• We could even use an MLP to calculate the similarity, for example, 𝑒),* =
𝑅𝑒𝐿𝑈 𝑣), 𝑣* @𝑤% @𝑤!.
• …but notice, all these methods are based on the idea of a matrix as a

dictionary:

𝑣 =
𝑣,
⋮

𝑣---
=

𝑣,,% ⋯ 𝑣,,&'!
⋮ ⋱ ⋮

𝑣---,% ⋯ 𝑣---,&'!

Vector Semantics
The CBOW probability is now:

𝑃 𝑊) = 𝑚|𝑊)*+ = 𝑛 =
exp 𝑣/@𝑣0

∑/1 exp 𝑣/1@𝑣0

Remember the derivative of a softmax:
𝜕softmax/(𝑒)

𝜕𝑒5
= Tsoftmax/(𝑒) 1 − softmax/(𝑒) 𝑚 = 𝑘

−softmax/(𝑒)softmax5(𝑒) 𝑚 ≠ 𝑘

Training a CBOW model

In order to find the parameters, we use gradient descent:

∇6#ℒ = −
1
𝑇

7
):8$(/

7
+($-,+'#

-

∇6# ln 𝑃 𝑊) = 𝑚|𝑤)*+

= −
1
𝑇

7
):8$(/

7
+($-,+'#

-

1 − 𝑃 𝑊) = 𝑚|𝑤)*+ 𝑣8$%&

Training a CBOW model

The CBOW model is trained by setting every vector equal to a weighted
average of the words that occurred near it!

𝑣/ ← 𝑣/ − 𝜂∇6#ℒ

𝑣/ ← 𝑣/ +
𝜂
𝑇

7
):8$(/

7
+($-,+'#

-

1 − 𝑃 𝑊) = 𝑚|𝑤)*+ 𝑣8$%&

Try the quiz!

• Try the quiz:
https://us.prairielearn.com/pl/course_instance/129874/assessment/
2337428
• Vm = [1,0,0,0] + (eta/T)*((1-P(coffee|smells))*[0,0,0,1]+(1-

P(coffee|hot))*[0,0,1,0])
• P(coffee|smells) = exp(vcoffee@vsmells)/sum(exp(vsmells@v))
= exp(0) / sum(exp(0)+exp(0)+ … + exp(0) + exp(vsmells@vsmells))
= 1 / ((N-1) + exp(1))

https://us.prairielearn.com/pl/course_instance/129874/assessment/2337428
https://us.prairielearn.com/pl/course_instance/129874/assessment/2337428

Outline

• What is a word? wordforms vs. lemmas vs. word senses
• Synonymy, similarity, and relatedness
• Vector semantics: CBOW and skip-gram
• Generative training vs. Contrastive training
• Visualizations
• Bias

Contrastive loss vs. Generative loss

• A generative loss is one like this:

ℒ = −
1
𝑇
7
)(#

,$!

7
+($-,+'#

-

ln
exp 𝑣8$@𝑣8$%&

∑/1 exp 𝑣/1@𝑣8$%&
• Notice that this loss term compares each word, 𝑤), to every other

word in the dictionary.
• Sometimes, generative training can take a very long time to converge.
• Sometimes, we get faster training using contrastive loss.

Contrastive loss
We train the neural network by listing, as positive examples, the words
that occur in the context of “𝑤 =coffee,” e.g.,

𝒟*(𝑤) = hot, although, iced,moderate, hot, consumption

Create a contrastive database by choosing the same number of words,
at random, from among the words that never appeared in the context
of “coffee:”

𝒟$(𝑤) = aardvark, dog, gazebo, actor, precipitates, iceberg

Training with contrastive loss
The coefficients �⃗�# = 𝑣#,%, … , 𝑣#,&'! for each vector are then learned in
order to maximize the log probability of the dataset:

ℒ = ln𝑝(Data) = *
.∈𝒱

ln 𝑝(𝒟1(𝑤)|𝑤) +*
.∈𝒱

ln 𝑝(𝒟'(𝑤)|𝑤)

= *
.∈𝒱

*
2∈𝒟%(.)

ln 𝑝 𝑐 𝑤 +*
.∈𝒱

*
2∈𝒟'(.)

ln 1 − 𝑝 𝑐 𝑤

=*
6∈𝒱

*
2⃗∈𝒟%(.)

ln
1

1 + 𝑒'2⃗86
+*
6∈𝒱

*
2⃗∈𝒟'(.)

ln 1 −
1

1 + 𝑒'2⃗86

Outline

• What is a word? wordforms vs. lemmas vs. word senses
• Synonymy, similarity, and relatedness
• Vector semantics: CBOW and skip-gram
• Generative training vs. Contrastive training
• Visualizations
• Bias

Visualizations: Similarity
Mikolov et al. (2013) tested word2vec on SimLex-999, and had better results than previously published
baselines. Here are some examples from their paper. Notice that not all of their ”similar words” are really
similar – some are just related. I’ll talk more about that next time.

Visualizations:
Relatedness

Mikolov (2013) showed that word2vec captures similarity relationships among words.
For example, the difference between the vectors for “woman” and “man” is roughly the
same as the difference between the vectors for “queen” and “king.” Perone (2016)
showed that this effect works differently depending on the training corpus: in his blog
post, he looks at word relatedness in the 15th century Voynich manuscript.

Christian S. Perone, "Voynich Manuscript: word vectors and t-SNE
visualization of some patterns," in Terra Incognita, 16/01/2016,
http://blog.christianperone.com/2016/01/voynich-manuscript-word-
vectors-and-t-sne-visualization-of-some-patterns/.

vec(“woman”) - vec(“man”) + vec(“king”) = vec(“queen”)

http://blog.christianperone.com/2016/01/voynich-manuscript-word-vectors-and-t-sne-visualization-of-some-patterns/
http://blog.christianperone.com/2016/01/voynich-manuscript-word-vectors-and-t-sne-visualization-of-some-patterns/

Outline

• What is a word? wordforms vs. lemmas vs. word senses
• Synonymy, similarity, and relatedness
• Vector semantics: CBOW and skip-gram
• Generative training vs. Contrastive training
• Visualizations
• Bias

Learning biased analogies from data

• It’s useful that algorithms like word2vec learn appropriate analogies,
like “Paris → France as Tokyo → Japan” and “kings → king as queens
→ queen.”
• Unfortunately, it also learns other analogies that were implied in the

training corpus, but that are invalid analogies.
• The paper that first demonstrated that problem was named after one

of the worst such discovered analogies:

“Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings,” Bolukbasi et al., 2016

Biased analogies

Bolukbasi et al. defined a “male-female” continuum by subtracting
vec(female)-vec(male), vec(woman)-vec(man), and so on, then
averaging these difference vectors.
They then took all of the words whose dictionary definitions included
gender-specific language (man, woman), and considered those to be
the gender-specific words (words for which a gender difference is
appropriate).
All other words were considered gender-neutral (any difference on the
male-female dimension is inappropriate).
The result is a second dimension: the appropriateness of a gender bias.

The Male-Female vs. Neutral-Specific Space
Here’s the resulting 2D space, from Bolukbasi et al., 2016:

she

Outline

• What is a word? Lemmas, wordforms, and word sense
• Synonymy, similarity, and relatedness
• Word2vec: maximize

ℒ = (
B∈𝒱

(
F⃗∈𝒟!(H)

ln
1

1 + 𝑒IF⃗JB
+(
H∈𝒱

(
F⃗∈𝒟"(H)

ln
1

1 + 𝑒F⃗JB

• Visualizations
• Similarity: list the K-nearest neighbors, show that they are similar
• Relatedness: analogies are shown as directions in the vector space!

• Bias
• Bias can be reduced by learning a direction that should not depend on the female-male axis,

and then squashing the female-male axis to zero for words that should be gender-neutral.

