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Wordform

A wordform is a unique sequence of 
characters.
• Wordforms are much easier for 

computers to find than lemmas, 
therefore most automatic 
processing deals with wordforms.
• …however, we lose something.  

“dog” and “dogs” become 
completely unrelated – as 
unrelated as “dog” and 
“exaggerate.” 



Lemma

A lemma is what humans usually 
think of as a “word.”  It is defined 
to be the form of the word that 
appears in a dictionary.
• Other wordforms that can be 

easily predicted from the lemma 
need not be listed.  



What is a 
word?
Is this a word?

Is this a 
different word, 
or the same 
word?

Are these the 
same word, or 
different 
words?



Word sense
Often, a word has different 
meanings that are completely 
unrelated.  We think of them as 
different words, that just happen 
to be spelled and pronounced the 
same way.
We say that these are different 
“senses” of the same word.

The Bank of England.  By Diliff - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=40912212

The Bank of the Thames.  By Diliff - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3639626



Wordform, lemma, and word sense

• wordform
• easy for a computer to work with: just look for space-bounded sequences of 

characters

• lemma
• This is what humans think of as a word.  A cluster of wordforms whose 

spellings, pronunciations, and meanings can all be derived from one another 
by applying simple rules.

• word sense
• A meaning so distinct from the other meanings of the word that it’s hard to 

consider them the same word. 
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Synonymy and similarity

• Words are “synonyms” if they 
have exactly the same meaning.
• No words ever have exactly the 

same meaning, so no two words 
are ever exactly synonyms.
• We prefer to talk about word 

similarity, 0 ≤ 𝑠(𝑤!, 𝑤") ≤ 1
• 𝑠 𝑤!, 𝑤" = 1: 𝑤! and 𝑤" are 

perfect synonyms.  Never happens 
in practice, but sometimes close.

• 𝑠 𝑤!, 𝑤" = 0: 𝑤! and 𝑤" are 
completely different.

𝑠 𝑤!, 𝑤"

(vanish, disappear)0.98

(behave, obey)0.73

(belief, impression)0.60

(muscle, bone)0.37

(modest, flexible)0.01
(hole, agreement)0.003



• Algorithms that try to estimate the similarity of two wordforms can be 
tested on databases such as SimLex-999.
• Humans rated the similarity of each word pair on a 10-point scale.



Similarity vs. 
Relatedness
Similar: words can be used 
interchangeably in most 
contexts
Related: there is some 
connection between the 
two words, such that they 
tend to appear in the same 
documents.

Similarity
coast
shore

0.9

H20 
water

clothes
closet

0.9

Relatedness0.8

touchdown
piano
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Review: Naïve Bayes: the “Bag-of-words” model
We can estimate the likelihood of an e-mail by pretending that the e-mail 
is just a bag of words (order doesn’t matter).
With only a few thousand spam e-mails, we can get a pretty good estimate 
of these things:

• 𝑃(𝑊 = “hi”|𝑌 = spam), 𝑃(𝑊 = “hi”|𝑌 = ham)
• 𝑃(𝑊 = “vitality”|𝑌 = spam), 𝑃(𝑊 = “vitality”|𝑌 = ham)
• 𝑃(𝑊 = “production”|𝑌 = spam), 𝑃(𝑊 = “production”|𝑌 = ham)

Then we can approximate 𝑃(𝑋|𝑌) by assuming that the words, 𝑊, are 
conditionally independent of one another given the category label:

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈@
!"#

$

𝑃(𝑊 = 𝑤!|𝑌 = 𝑦) approved

prescription
foryou

vitality
hi



Similarity: The Internet is the database
Similarity = words can be used interchangeably in most contexts
How do we measure that in practice?
Answer: extract examples of word 𝑤!, +/- N words (N=2 or 3):

…hot, although iced coffee is a popular…
…indicate that moderate coffee consumption is benign…

…and of 𝑤":

…consumed as iced tea.  Sweet tea is…
…national average of tea consumption in Ireland…

The words “iced” and “consumption” appear in both contexts, so we can conclude that 
𝑠(coffea, tea) > 0.  No other words are shared, so we can conclude 𝑠(coffee, tea) < 1.



skip-gram context probability

Consider the “…hot although iced coffee is a popular…”. 
Define the target word to be 𝑤# =coffee.
Define the context words 𝑤$% =hot, 𝑤$" =although, …, 𝑤% =popular.
The skip-gram probability is a naïve Bayes model of the context:

𝑝 𝑤$%, … , 𝑤% 𝑤# = 2
&'#
&($%

%

𝑝(𝑤&|𝑤#)



The skip-gram model

• Skip-gram is a model of word meaning: 
• The meaning of a word is defined to be the distribution of context 

words that it can predict.
• We find out which words 𝑤) can predict by learning neural nets that 

predict its context words 𝑤)*+:

ℒ = −
1
𝑇
7
)(#

,$!

7
+($-,+'#

-

ln 𝑃 𝑤)*+|𝑤)



The “continuous bag of 
words” model (CBOW)

• CBOW is a similar model of word meaning: 
• The meaning of a word is defined to be the distribution of context 

words that predict it the best.
• We find out which words predict 𝑤) by learning neural nets that 

predict 𝑤) given its context words, 𝑤)*+, for – 𝑐 ≤ 𝑗 ≤ 𝑐:

ℒ = −
1
𝑇
7
)(#

,$!

7
+($-,+'#

-

ln 𝑃 𝑤)|𝑤)*+



“Probability,” for a NN, means softmax

• What does it mean that we train a neural net to compute 𝑃 𝑤)|𝑤)*+ ?
• It’s a probability, so it must mean a softmax:

𝑃 𝑊) = 𝑚|𝑊)*+ = 𝑛 =
exp 𝑒/,0

∑/1 exp 𝑒/1,0

• But what are the inputs to the neural net?  What is 𝑒/,0?



Vector Semantics

• The simplest useful assumption is this: a word is a vector.

𝑃 𝑊) = 𝑚|𝑊)*+ = 𝑛 =
exp 𝑣/@𝑣0

∑/1 exp 𝑣/1@𝑣0
• …where 𝑣/ is a d-dimensional vector, 𝑣/ = [𝑣/,#, … , 𝑣/,2$!]
• The only trainable parameters in this model are the word vectors!  
• The dictionary, 𝑣 , is a matrix, with as many rows as there are words 

in the vocabulary:

𝑣 =
𝑣3
⋮

𝑣444
=

𝑣3,# ⋯ 𝑣3,2$!
⋮ ⋱ ⋮

𝑣444,# ⋯ 𝑣444,2$!



cosine similarity
If words 𝑤! and 𝑤" are similar, 𝑤! is 
represented by vector �⃗�!, and 𝑤" by vector 
�⃗�", then the angle between the two vectors 
should be small.
Angle between two vectors can be measured 
by their dot product:

cos 𝜃 =
�⃗�! ) �⃗�"
�⃗�! �⃗�"

where

�⃗�! ) �⃗�" = *
#$%

&'!

𝑣!,#𝑣",# , �⃗�! = *
#$%

&'!

𝑣!,#"

By BenFrantzDale at the English Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=49972362



Vector Semantics
There are many ways to make this model more flexible.  For example:
• Every word could have two different vectors: one (𝑣)) for when it’s being 

predicted, one (𝑐*) for when it is predicting, thus 𝑒),* = 𝑣)@𝑐*.
• We could put a delay-weight matrix, 𝑤+, in between the word vectors, thus 
𝑒),+,* = 𝑣)@𝑤+@𝑐*.
• We could even use an MLP to calculate the similarity, for example, 𝑒),* =
𝑅𝑒𝐿𝑈 𝑣), 𝑣* @𝑤% @𝑤!.
• …but notice, all these methods are based on the idea of a matrix as a 

dictionary:

𝑣 =
𝑣,
⋮

𝑣---
=

𝑣,,% ⋯ 𝑣,,&'!
⋮ ⋱ ⋮

𝑣---,% ⋯ 𝑣---,&'!



Vector Semantics
The CBOW probability is now:

𝑃 𝑊) = 𝑚|𝑊)*+ = 𝑛 =
exp 𝑣/@𝑣0

∑/1 exp 𝑣/1@𝑣0

Remember the derivative of a softmax:
𝜕softmax/(𝑒)

𝜕𝑒5
= Tsoftmax/(𝑒) 1 − softmax/(𝑒) 𝑚 = 𝑘

−softmax/(𝑒)softmax5(𝑒) 𝑚 ≠ 𝑘



Training a CBOW model

In order to find the parameters, we use gradient descent:

∇6#ℒ = −
1
𝑇

7
):8$(/

7
+($-,+'#

-

∇6# ln 𝑃 𝑊) = 𝑚|𝑤)*+

= −
1
𝑇

7
):8$(/

7
+($-,+'#

-

1 − 𝑃 𝑊) = 𝑚|𝑤)*+ 𝑣8$%&



Training a CBOW model

The CBOW model is trained by setting every vector equal to a weighted 
average of the words that occurred near it!

𝑣/ ← 𝑣/ − 𝜂∇6#ℒ

𝑣/ ← 𝑣/ +
𝜂
𝑇

7
):8$(/

7
+($-,+'#

-

1 − 𝑃 𝑊) = 𝑚|𝑤)*+ 𝑣8$%&



Try the quiz!

• Try the quiz: 
https://us.prairielearn.com/pl/course_instance/129874/assessment/
2337428
• Vm = [1,0,0,0] + (eta/T)*((1-P(coffee|smells))*[0,0,0,1]+(1-

P(coffee|hot))*[0,0,1,0])
• P(coffee|smells) = exp(vcoffee@vsmells)/sum(exp(vsmells@v))
= exp(0) / sum(exp(0)+exp(0)+ … + exp(0) + exp(vsmells@vsmells))
= 1 / ( (N-1) + exp(1) )

https://us.prairielearn.com/pl/course_instance/129874/assessment/2337428
https://us.prairielearn.com/pl/course_instance/129874/assessment/2337428
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Contrastive loss vs. Generative loss

• A generative loss is one like this:

ℒ = −
1
𝑇
7
)(#

,$!

7
+($-,+'#

-

ln
exp 𝑣8$@𝑣8$%&

∑/1 exp 𝑣/1@𝑣8$%&
• Notice that this loss term compares each word, 𝑤), to every other 

word in the dictionary.
• Sometimes, generative training can take a very long time to converge.
• Sometimes, we get faster training using contrastive loss.



Contrastive loss
We train the neural network by listing, as positive examples, the words 
that occur in the context of “𝑤 =coffee,” e.g.,

𝒟*(𝑤) = hot, although, iced,moderate, hot, consumption

Create a contrastive database by choosing the same number of words, 
at random, from among the words that never appeared in the context 
of “coffee:”

𝒟$(𝑤) = aardvark, dog, gazebo, actor, precipitates, iceberg



Training with contrastive loss
The coefficients �⃗�# = 𝑣#,%, … , 𝑣#,&'! for each vector are then learned in 
order to maximize the log probability of the dataset:

ℒ = ln𝑝(Data) = *
.∈𝒱

ln 𝑝(𝒟1(𝑤)|𝑤) +*
.∈𝒱

ln 𝑝(𝒟'(𝑤)|𝑤)

= *
.∈𝒱

*
2∈𝒟%(.)

ln 𝑝 𝑐 𝑤 +*
.∈𝒱

*
2∈𝒟'(.)

ln 1 − 𝑝 𝑐 𝑤

=*
6∈𝒱

*
2⃗∈𝒟%(.)

ln
1

1 + 𝑒'2⃗86
+*
6∈𝒱

*
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ln 1 −
1

1 + 𝑒'2⃗86
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Visualizations: Similarity
Mikolov et al. (2013) tested word2vec on SimLex-999, and had better results than previously published 
baselines.  Here are some examples from their paper.  Notice that not all of their ”similar words” are really 
similar – some are just related.   I’ll talk more about that next time.



Visualizations: 
Relatedness

Mikolov (2013) showed that  word2vec captures similarity relationships among words.  
For example, the difference between the vectors for “woman” and “man” is roughly the 
same as the difference between the vectors for “queen” and “king.”  Perone (2016) 
showed that this effect works differently depending on the training corpus: in his blog 
post, he looks at word relatedness in the 15th century Voynich manuscript.

Christian S. Perone, "Voynich Manuscript: word vectors and t-SNE 
visualization of some patterns," in Terra Incognita, 16/01/2016, 
http://blog.christianperone.com/2016/01/voynich-manuscript-word-
vectors-and-t-sne-visualization-of-some-patterns/.

vec(“woman”) - vec(“man”) + vec(“king”) = vec(“queen”)

http://blog.christianperone.com/2016/01/voynich-manuscript-word-vectors-and-t-sne-visualization-of-some-patterns/
http://blog.christianperone.com/2016/01/voynich-manuscript-word-vectors-and-t-sne-visualization-of-some-patterns/
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Learning biased analogies from data

• It’s useful that algorithms like word2vec learn appropriate analogies, 
like “Paris → France as Tokyo → Japan” and “kings → king as queens 
→ queen.”
• Unfortunately, it also learns other analogies that were implied in the 

training corpus, but that are invalid analogies.  
• The paper that first demonstrated that problem was named after one 

of the worst such discovered analogies:

“Man is to Computer Programmer as Woman is to Homemaker? 
Debiasing Word Embeddings,” Bolukbasi et al., 2016  



Biased analogies

Bolukbasi et al. defined a “male-female” continuum by subtracting 
vec(female)-vec(male), vec(woman)-vec(man), and so on, then 
averaging these difference vectors.
They then took all of the words whose dictionary definitions included 
gender-specific language (man, woman), and considered those to be 
the gender-specific words (words for which a gender difference is 
appropriate).
All other words were considered gender-neutral (any difference on the 
male-female dimension is inappropriate).
The result is a second dimension: the appropriateness of a gender bias.



The Male-Female vs. Neutral-Specific Space 
Here’s the resulting 2D space, from Bolukbasi et al., 2016:

she
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• Visualizations
• Similarity: list the K-nearest neighbors, show that they are similar
• Relatedness: analogies are shown as directions in the vector space!

• Bias
• Bias can be reduced by learning a direction that should not depend on the female-male axis, 

and then squashing the female-male axis to zero for words that should be gender-neutral.


