
Lecture 15: A*
Search

Mark Hasegawa-Johnson
2/2023

Lecture slides CC0

By SRI International - SRI International, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17294520

https://commons.wikimedia.org/w/index.php?curid=17294520

Contents

• A* search: Using a heuristic to help choose which node to expand
• Proof that Dijkstra’s algorithm is optimal
• Heuristics that allow A* to be optimal:

• Consistent: ℎ(𝑝) ≤ 𝑑(𝑝, 𝑟) + ℎ(𝑟)
• Admissible: ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

• Designing a consistent heuristic by relaxing constraints

Why is BFS slow?

• Before we expand a node that is
𝑑 steps from the start,
• … we must expand all nodes that

are 𝑑 − 1 steps from the start.
• Result: complexity is 𝑂{𝑏!}

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Speeding up BFS and
Dijsktra’s algorithm
(the intuition)

• Intuitively, this node, which is
farther from the goal,
• …should not have been

expanded before this node,
because this one is closer to the
goal.

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

𝑝
𝑞

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Why was Dijkstra
slow?
• Dijkstra’s algorithm expanded

this node first because its
distance from the START node is
only

𝑔 𝑝 = 15
• This node is expanded second,

because its distance from the
START node is

𝑔 𝑟 = 16

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

𝑝
𝑟

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Fixing Dijkstra’s
algorithm
Instead of sorting nodes by how far
they are from Start, can we sort
nodes based on the total length of
the best path that goes through that
node?
• This node has

𝑔 𝑝 = 15
ℎ(𝑝) = 16

𝑔(𝑝) + ℎ(𝑝) = 31
• This node has

𝑔 𝑟 = 16
ℎ(𝑟) = 13

𝑔(𝑟) + ℎ(𝑟) = 29
…so this node should be expanded
first. CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

𝑝
𝑟

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

A* search: Estimate 𝑓(𝑝), the total cost of the
best path that goes through node 𝑝
• DEFINE: 𝑔(𝑝) = cost of the best path from the START node to node 𝑝,

𝑔(𝑝) = 𝑑(𝑆𝑡𝑎𝑟𝑡, 𝑝)
• DEFINE: ℎ(𝑝) = heuristic (approximate) estimate of the distance from
𝑝 to 𝐺𝑜𝑎𝑙. Finding ℎ(𝑝) must be less expensive than finding the true
distance 𝑑(𝑝, 𝐺𝑜𝑎𝑙)! So it’s not exactly equal, only approximately:

ℎ(𝑝) ≈ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)
• RESULT: estimate of the total length of the path through node 𝒑 is

𝑓(𝑝) = 𝑔(𝑝) + ℎ(𝑝) ≈ 𝑑(𝑆𝑡𝑎𝑟𝑡, 𝑝) + 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

A* Search
The A* algorithm is just like
Dijkstra’s algorithm, except that,
• At each iteration,
• instead of expanding the node

with the lowest 𝑔(𝑝),
• …expand the node with the

lowest 𝑔(𝑝) + ℎ(𝑝)

(In this example, ℎ(𝑥) =Euclidean
distance to Goal)

By Subh83 - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=14916867

https://commons.wikimedia.org/w/index.php?curid=14916867

Contents

• A* search: Using a heuristic to help choose which node to expand
• Proof that Dijkstra’s algorithm is optimal
• Heuristics that allow A* to be optimal:

• Consistent: ℎ(𝑝) ≤ 𝑑(𝑝, 𝑟) + ℎ(𝑟)
• Admissible: ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

• Designing a consistent heuristic by relaxing constraints

Proof that Dijkstra’s
algorithm is optimal

• Suppose that the shortest path to node 𝑟 goes through node 𝑝
• Then the correct value of 𝑔(𝑟) = 𝑔(𝑝) + 𝑑(𝑝, 𝑟)
• In order to make sure 𝑔(𝑟) is set correctly, we need to make sure that 𝑝 is

expanded before 𝑟
• But that is guaranteed, because 𝑔(𝑝) < 𝑔(𝑟)

Explored set Start
p

q

Frontier
r Goal

Contents

• A* search: Using a heuristic to help choose which node to expand
• Proof that Dijkstra’s algorithm is optimal
• Heuristics that allow A* to be optimal:

• Consistent: ℎ(𝑝) ≤ 𝑑(𝑝, 𝑟) + ℎ(𝑟)
• Admissible: ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

• Designing a consistent heuristic by relaxing constraints

How can we make sure A* finds
the shortest path to node 𝑟?

• Suppose the shortest path to 𝑟 goes through 𝑝. Then, in order to make sure 𝑔(𝑟) is
set correctly, we need to make sure that 𝑝 is expanded before 𝑟, so it will set 𝑔(𝑟)
to

𝑔(𝑟) = 𝑔(𝑝) + 𝑑(𝑝, 𝑟)
• If we are using A* search, then 𝑝 is expanded before 𝑟 if:

𝑔 𝑝 + ℎ 𝑝 ≤ 𝑔 𝑟 + ℎ(𝑟)
• Combining these two equations: A* finds the shortest path to node x if

𝑔 𝑝 + ℎ 𝑝 ≤ 𝑔 𝑝 + 𝑑(𝑝, 𝑟) + ℎ(𝑟)
…or, in other words,

ℎ 𝑝 ≤ 𝑑 𝑝, 𝑟 + ℎ(𝑟)

Explored set Start
p

q

Frontier
r Goal

Consistent heuristic: the first
time 𝑟 is expanded, it is
expanded with the right cost

A* guarantees that r has the correct 𝑔(𝑟) the first time it is expanded (moved
from the frontier to the explored set) if, for every 𝑝 such that 𝑔(𝑝) < 𝑔(𝑟),

ℎ 𝑝 ≤ 𝑑 𝑝, 𝑟 + ℎ(𝑟)

A heuristic with this property is called consistent.

Explored set Start
p

q

Frontier
r Goal

Example of a consistent
heuristic: Manhattan
distance

• Consider a maze in which only L-R and U-D moves are possible
• If there were no walls between 𝑝 = (𝑦", 𝑥") and 𝑟 = (𝑦# , 𝑥#), then their

distance would be the number of horizontal steps, plus the number of
vertical steps. We call this the “Manhattan distance,” and write it as:

𝑝 − 𝑟 $ = 𝑦" − 𝑦# + |𝑥" − 𝑥#|
• If there are walls, then the distance may be larger:

𝑑(𝑝, 𝑟) ≥ 𝑦" − 𝑦# + |𝑥" − 𝑥#|

Example of a consistent heuristic: Manhattan distance

Suppose the location of the goal is (𝑦% , 𝑥%).
Suppose we define the heuristic as

ℎ(𝑝) = 𝑦" − 𝑦% + |𝑥" − 𝑥%|
ℎ(𝑟) = 𝑦# − 𝑦% + |𝑥# − 𝑥%|

Notice we are guaranteed that:
𝑦" − 𝑦% ≤ 𝑦" − 𝑦# + 𝑦# − 𝑦%
𝑥" − 𝑥% ≤ 𝑥" − 𝑥# + 𝑥# − 𝑥%

If you add those two equations together, you
discover that:

ℎ(𝑝) ≤ 𝑑(𝑝, 𝑟) + ℎ(𝑟)

Contents

• A* search: Using a heuristic to help choose which node to expand
• Proof that Dijkstra’s algorithm is optimal
• Heuristics that allow A* to be optimal:

• Consistent: ℎ(𝑝) ≤ 𝑑(𝑝, 𝑟) + ℎ(𝑟)
• Admissible: ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

• Designing a consistent heuristic by relaxing constraints

Admissible heuristic:
Consistent only for the Goal

Suppose that we don’t care whether or not 𝑔(𝑟) is correct the first time 𝑟 is
expanded (e.g., maybe we will allow ourselves to expand it over and over again, in
case 𝑔(𝑟) is wrong the first time).
However, suppose we want to make sure that the first time the Goal is expanded, it
has the correct optimal path.
We can do this if ℎ(𝑝) satisfies:

ℎ 𝑝 ≤ 𝑑 𝑝, 𝐺𝑜𝑎𝑙 + ℎ(𝐺𝑜𝑎𝑙)
…but why not just set ℎ(𝐺𝑜𝑎𝑙) = 0? In that case, we have the very simple constraint
that

ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

Explored set Start
p

q

Frontier
r Goal

Admissible heuristic:
Consistent only for the Goal

A heuristic that satisfies the constraint:
ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

…is called admissible.
• All consistent heuristics are also admissible, but not vice versa.
• Sometimes, you might have a search problem where you can’t figure out how

to make your heuristic consistent, but you can figure out how to make it
admissible.
• A* search with an admissible heuristic is still optimal if other nodes (besides

Goal) get re-expanded every time they get popped from the frontier.

Explored set Start
p

q

Frontier
r Goal

Try the quiz!

• Try the quiz:
https://us.prairielearn.com/pl/course_instance/129874/assessment/
2333392
• D(F,G)=1, h(F)=0
• D(E.G)=3, h(E)=1
• D(B,G) = 9, h(B)=4
• D(C,G)=7, h(C) =2
• D(D,G) =9, h(D) =10
• D(A,G) = 11, h(A) = 3

https://us.prairielearn.com/pl/course_instance/129874/assessment/2333392
https://us.prairielearn.com/pl/course_instance/129874/assessment/2333392

Contents

• A* search: Using a heuristic to help choose which node to expand
• Proof that Dijkstra’s algorithm is optimal
• Heuristics that allow A* to be optimal:

• Consistent: ℎ(𝑝) ≤ 𝑑(𝑝, 𝑟) + ℎ(𝑟)
• Admissible: ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

• Designing a consistent heuristic by relaxing constraints

Inventing a heuristic by
relaxing constraints

Remember how we invented the heuristic ℎ(𝑝) = 𝑦" − 𝑦% + |𝑥" − 𝑥%| for
the simple maze? We noticed that:
• If there were no walls between 𝑝 = (𝑦", 𝑥") and 𝐺𝑜𝑎𝑙 = (𝑦% , 𝑥%), then

their distance would be the number of horizontal steps, plus the number
of vertical steps. If there are walls, then the distance is larger:

𝑑 𝑝, 𝐺𝑜𝑎𝑙 ≥ 𝑦" − 𝑦% + |𝑥" − 𝑥%|
This is an example of a general principle: you can invent a heuristic by
noticing what makes your problem hard (e.g., walls), and getting rid of it.

Example: the
15-puzzle

• For another example, consider the 15-puzzle: Shift one tile at a time
until the puzzle reaches the goal state.
• What makes it hard is that you can’t move the 1-tile to its correct

square, because the 12-tile is in the way.

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

Example: the
15-puzzle

We can design a heuristic (which makes A* search much faster) by just
ignoring the constraint.

ℎ 𝑝 = B
&'()*$

$+ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑖𝑙𝑒 𝑤𝑜𝑢𝑙𝑑
ℎ𝑎𝑣𝑒 𝑡𝑜 𝑚𝑜𝑣𝑒 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑤𝑒𝑟𝑒 𝑛𝑜

𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑎𝑦

Since we can’t really move the tiles in that way, we are guaranteed that
ℎ(𝑝) <= 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

Example: the
15-puzzle

BFS solution of the 15-puzzle expands 54,000,000,000 nodes.
A* solution, using the following heuristic, expands 1641 nodes.

ℎ 𝑝 = B
&'()*$

$+ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑖𝑙𝑒 𝑤𝑜𝑢𝑙𝑑
ℎ𝑎𝑣𝑒 𝑡𝑜 𝑚𝑜𝑣𝑒 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑤𝑒𝑟𝑒 𝑛𝑜

𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑎𝑦

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

Contents

• A* search: Using a heuristic to help choose which node to expand
• Proof that Dijkstra’s algorithm is optimal
• Heuristics that allow A* to be optimal:

• Consistent: ℎ(𝑝) ≤ 𝑑(𝑝, 𝑟) + ℎ(𝑟)
• Admissible: ℎ(𝑝) ≤ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

• Designing a consistent heuristic by relaxing constraints

