
Lecture 14:
Search

Mark Hasegawa-Johnson
Lecture slides CC0

By Claudio Oliveira Lim…, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=46626573

https://commons.wikimedia.org/w/index.php?curid=46626573

Outline

• Planning in a Known, Observable, Deterministic Environment
• Dijkstra’s algorithm: Frontier, Explored set
• Explored set: Avoid expanding the same state
• DFS, BFS, and UCS

Planning in a Known, Fully Observable,
Deterministic Environment
Suppose that you are at point A, and you want to get to point B.
• Known environment: You have a valid map, telling you all the possible

turns you could take between A and B.
• Fully Observable: You have thousands of internet strangers telling you

about all the traffic jams between A and B, so you know exactly how long
each road will take.
• Deterministic: the time required for each road is not random.
The rational thing to do is to (let your mapping software) plan your route in
advance, so that you can get from A to B in the shortest possible time.
Today’s subject: how much computation is required to find the optimal plan
(the shortest path)?

Search example: Solve this maze

• Starting point: Start at the
square
• Goal: Reach the dot

Search example: Traveling salesman problem

• Starting point: Start at the
square
• Goal: Reach all the dots, in the

shortest possible number of
steps

Outline

• Planning in a Known, Observable, Deterministic Environment
• Dijkstra’s algorithm: Frontier, Explored set
• Explored set: Avoid expanding the same state
• DFS, BFS, and UCS

Dijkstra’s algorithm

Dijkstra’s algorithm divides all states
into three sets:
• The explored set is the set of states

to which you already know the
shortest path (filled circles)
• The unexplored set are the states

you don’t yet know how to reach
(blank)
• The frontier are states you know

how to reach, but you don’t yet
know the shortest path (open
circles)

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Dijkstra’s algorithm, a.k.a. Uniform Cost Search

Step 1:
• Put the starting state in the

explored set (you can reach it
with a cost of 0).
• Put its neighbors into the

frontier.
• To each of them, specify the

length of the best path you know.
• Note: the path you know is not

necessarily the best path!!
START
Cost: 0

A
Cost: 10

B
Cost: 5

C
Cost: 12

Distance
10 Distance

5

Distance 12

explored set: { START } frontier: { (5,B), (10,A), (12,C) }

Step 1:
• Each node (except the starting

node) should have a pointer to
its parent
• Each node has just one parent
• Later on we might change a

node’s parent
START
Cost: 0

A
Cost: 10

B
Cost: 5

C
Cost: 12

Distance
10 Distance

5

Distance 12

Dijkstra’s algorithm, a.k.a. Uniform Cost Search

explored set: { START } frontier: { (5,B,START), (10,A,START), (12,C,START) }

Step 2:
• Move the lowest-cost state from

frontier to explored,
• …because we know the shortest

path to that node.
• All other nodes have a higher

cost than this node, so…
• …we will never find a path to

this node that’s less expensive
than the path we already know.

START
Cost: 0

A
Cost: 10

B
Cost: 5

C
Cost: 12

Distance
10

Distance
5

Distance 12

Dijkstra’s algorithm, a.k.a. Uniform Cost Search

explored set: { START, B } frontier: { (10,A,START), (12,C,START) }

Step 2:
• If the newly explored node has

neighbors that are still in the
frontier, you might need to
update their costs.
• If you update their costs, you

should also update the “parent”
pointer, so it points to the parent
on the lowest-cost path. START

Cost: 0

A
Cost: 10

7
B

Cost: 5

C
Cost: 12

10

10
5

12

2

5

Dijkstra’s algorithm, a.k.a. Uniform Cost Search

explored set: { START, B } frontier: {(7,A,B), (10,C,B), (10,A,START), (12,C,START) }

Step 2:
• If the newly explored node has

neighbors that are not in the
frontier yet…
• …add them to the frontier.

START
Cost: 0

A
Cost: 10

7
B

Cost: 5

C
Cost: 12

10

10
5

12

2

5

6

Goal!
Cost: 11

Dijkstra’s algorithm, a.k.a. Uniform Cost Search

explored set: { START, B } frontier: {(7,A,B), (10,C,B), (10,A,S), (11,G,B), (12,C,S) }

Step 3:
• Take the cheapest node from the

frontier, move it to the explored
set. You now know its cheapest
path.
• Add its neighbors to the frontier,

with updated costs

START
Cost: 0

A
Cost: 10

7
B

Cost: 5

C
Cost: 12

10

10
5

12

2

5

6

Goal!
Cost: 11

9

D
Cost: 12

5 2

Dijkstra’s algorithm, a.k.a.
Uniform Cost Search

explored set: { START,B,A } frontier: { (9,G,A),(10,C,B),(10,A,S),(11,G,B),(12,C,S),(12,D,A) }

Last step:
• When you move the Goal state

from Frontier to Explored, then
you are done.
• There is no unexplored state

with a lower cost, therefore…
• … it is guaranteed that you have

found the lowest-cost path to
the goal.

START
Cost: 0

A
Cost: 10

7
B

Cost: 5

C
Cost: 12

10

10
5

12

2

5

6

Goal!
Cost: 11

9

D
Cost: 12

5 2

Dijkstra’s algorithm, a.k.a.
Uniform Cost Search

explored set: { START,B,A,GOAL } frontier: { (10,C,B),(10,A,S),(11,G,B),(12,C,S),(12,D,A) }

The lowest-cost path is found by
back-tracing from each node to its
parent.

START
Cost: 0

A
Cost: 10

7
B

Cost: 5

C
Cost: 12

10

10
5

12

2

5

6

Goal!
Cost: 11

9

D
Cost: 12

5 2

Dijkstra’s algorithm, a.k.a.
Uniform Cost Search

Outline

• Planning in a Known, Observable, Deterministic Environment
• Dijkstra’s algorithm: Frontier, Explored set
• Explored set: Avoid expanding the same state
• DFS, BFS, and UCS

Purpose of the explored set

• Once a state has been inserted
into the explored set, it should
not be evaluated again.
• For example, this state…
• …is a neighbor of this state…
• …but moving backward from the

right-hand state to the left-hand
state would be a waste of time!

Purpose of the explored set

The purpose of the explored set is
to make sure that:
• if we have already found the

path shown on top,
• we don’t waste time evaluating

the path on the bottom.
• The path on the bottom is a

worse way to get to exactly the
same state

node1

node2

How to avoid wasted time: Hashing
By defining an appropriate hash()
function, we can make these two nodes
appear to be the same node. For
example:
class Node():

def hash(self):
return hash((self.y,self.x))

If you then do:
explored = set([node1])
node2 in explored
The answer will be True, and so you will
know that you don’t need to waste
computation on node2.

node1

node2

But watch out!!!

In a multi-waypoint maze, the
hash function needs to consider
• (𝑦, 𝑥) location
• Which waypoints have been

reached
If you ignore the waypoints, the
hash function will incorrectly tell
you that these two are the same,
so the lower path will be
discarded

Advantages and disadvantages of explored set

Advantage of an explored set:
• It saves computation, because you

don’t re-expand states you have
already expanded.

Disadvantage of an explored set:
• If you define the explored set in the

wrong way, then you might
accidentally call these two the
same state, and then your
algorithm will never find an
optimal solution.

Quiz
• Try the quiz:

https://us.prairielearn.com/pl/course_
instance/129874/assessment/2333250
• Here, “no explored set” means “do not

prevent yourself from re-expanding
nodes that you have already
expanded.”
• The variant at left ends with the

following:
• Explored: {0:S,2:C,4:A,6:B,7:D,9:B,9:G}
• Frontier: [10:D,10:E,11:C,11:E,

12:E,15:C,15:D,15:E,15:G,18:C,18:D]

https://us.prairielearn.com/pl/course_instance/129874/assessment/2333250
https://us.prairielearn.com/pl/course_instance/129874/assessment/2333250

Outline

• Planning in a Known, Observable, Deterministic Environment
• Dijkstra’s algorithm: Frontier, Explored set
• Explored set: Avoid expanding the same state
• DFS, BFS, and UCS

In which order should you pick nodes from
the frontier?

• LIFO (last-in, first-out) = Depth-First Search (DFS):
• the next node you expand will always be the one most

recently added to the frontier.
• FIFO (first-in, first-out) = Breadth-First Search (BFS):
• the next node you expand will always be the one least

recently added to the frontier.
•PriorityQueue (lowest-cost, first-out) = Uniform Cost

Search (UCS, a.k.a. Dijkstra’s algorithm):
• the next node you expand will always be the one with the

lowest cost

Depth-first search (DFS)

Expand frontier in LIFO order (last in,
first out).
Result: most recently discovered path
is pursued, all the way to the end.

Depth-first-search. CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Analysis of search strategies

• Strategies are evaluated along the following criteria:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: number of nodes generated
• Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of
• b: maximum branching factor of the search tree
• d: depth of the optimal solution
• m: maximum length of any path in the state space (may be

infinite)

Depth-first search (DFS)
Incomplete: If there are an infinite
number of states, DFS might go down
a path of infinite length, and might
never find a solution.
Suboptimal: DFS returns the first
path it finds, which might not be the
shortest path.
Time Complexity: 𝑂{𝑏!}, where m is
the longest possible path length.
Space Complexity: only 𝑂{𝑚}! Once
you’ve finished a path, you can
delete it from the tree!

Depth-first-search. CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Expand the frontier in FIFO order
(first-in, first-out).

Result: all paths of length d are
explored, then all paths of length
d+1, and so on.

Animated-BFS. CC-SA 3.0, Blake Matheny, 2007
https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Breadth-first search (BFS)

Complete: if a finite-length path
exists, BFS will find it.
Optimal: BFS returns the first
solution it finds, which is always the
shortest path.
Time Complexity: 𝑂{𝑏"}, where d is
the length of the best path. This is
usually much less than 𝑂{𝑏!},
because 𝑑 < 𝑚.
Space Complexity: 𝑂{𝑏"}. No part of
the tree can be deleted until you’ve
found the solution. Animated-BFS. CC-SA 3.0, Blake Matheny, 2007

https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Breadth-first search (BFS)

BFS = UCS with equal
step sizes
• If every step has the same cost,

then…

• …the lowest-cost node in the
frontier is always the one that
entered the frontier first.

• Therefore, if every step has the
same cost, then UCS = BFS.

Dijkstra’s progress, CC-BY 3.0, Subh83, 2011
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Outline

• Planning in a Known, Observable, Deterministic Environment
• Dijkstra’s algorithm: Frontier, Explored set
• Explored set: Avoid expanding the same state
• DFS, BFS, and UCS

