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Review: Neural net is a universal approximator
• Suppose we have some function, 
𝑓(𝑥), that we want to approximate 
using a neural net
• In the limit as 𝑁 → ∞, the network 

shown here can approximate 𝑓(𝑥)
with zero error
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Review: Machine learning
• Start from random initial values of 
𝑤.

• Adjust 𝑤 according to:
𝑤 ← 𝑤 − 𝜂∇!ℒ

• Continue until ℒ stops decreasing
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The three types of machine learning error

• Approximation error/Underfitting: You don’t have enough hidden 
nodes to achieve small ℒ on the training corpus
• Generalization error/Overfitting: You don’t have enough training 

data; optimum 𝑤 on the training corpus is not also optimum on the 
test corpus
• Optimization error: There is a value of 𝑤 that achieves low ℒ on the 

training corpus, but finding it is too computationally expensive
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The optimization problem

• Given: a function ℒ:𝒲 → ℝ that maps from a set of possible weight 
vectors, 𝒲, to the set of real numbers, ℝ
• Find: a value +𝑤 such that ℒ +𝑤 ≤ ℒ 𝑤 for all 𝑤 ∈ 𝒲.



Example of the problem: Grid search

• Suppose we have M network 
weights
• Suppose we test K possible values 

of each weight
• Then the computational complexity 

is 𝒪 𝐾" .

Grid search of 2 hyperparameters, with 10 values each, requires testing 
10! = 100 combinations.  CC-SA 4.0, Alexander Elvers,

https://commons.wikimedia.org/wiki/File:Hyperparameter_Optimization_
using_Grid_Search.svg
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Review: Gradient descent
• Start from random initial values of 
𝑤.

• Adjust 𝑤 according to:
𝑤 ← 𝑤 − 𝜂∇!ℒ

• Continue until ℒ stops decreasing
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Problems with gradient descent, and a 
program for fixing them during today’s lecture
1. If we choose 𝜂 too large, the sequence of w’s might diverge.  If we 

choose 𝜂 too small, the sequence of w’s might take a very long time 
to converge.
• Solutions: Newton’s method, quasi-second-order methods, line search

2. It might not be possible to compute ∇!ℒ
• Solutions: empirical gradients, coordinate search

3. Gradient descent finds a local optimum, not a global optimum
• Solutions: simulated annealing, random restarts



Newton’s method

Newton proposed an iterative 
method to find the zeros of a 
function:

𝑤 ← 𝑤 −
𝑓(𝑤)
𝑓′(𝑤)

CC-SA 3.0, Raul Pfeifer, 
https://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.gif

https://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.gif


Newton’s method for machine learning: scalar w
• In machine learning, we’re trying to find minima of ℒ(𝑤), which are zero-

crossings of ℒ& 𝑤 = ∇'ℒ, so Newton’s method becomes

𝑤 ← 𝑤 −
ℒ′
ℒ′′

• Notice the similarity to Gradient descent: 𝑤 ← 𝑤 − 𝜂ℒ′.  Newton’s 
method is the same thing as setting the learning rate to 𝜂 = 1/ℒ′′.

• If ℒ(𝑤) is quadratic, Newton’s method finds the minimum in one step: 
ℒ 𝑤 = 𝑎 𝑤 − 8𝑤 ( + ℒ)"%

𝑤 ← 𝑤 −
ℒ&

ℒ &&
= 𝑤 −

𝑎 𝑤 − 8𝑤
𝑎

= 8𝑤

• Near a local optimum, many loss functions are approximately quadratic, 
so Newton’s method can often find an optimum in ≈ 1 step

CC-SA 3.0, Cdang, 
https://commons.wikimedia.org/wiki
/File:Minimum_fonction_scilab.svg



Newton’s method for machine learning: vector w
• If 𝑤 = 𝑤*, … , 𝑤+,$ , then ℒ& 𝑤 = ∇'ℒ =

-ℒ
-'$

, … , -ℒ
-'%&'

, and the second 
derivative is called the “Hessian:”
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• Newton’s method becomes:
𝑤 ← 𝑤 − ∇'ℒ@𝐻,$

… which has a computational complexity of 𝒪 𝑀/ .  If M is millions, then gradient 
descent (𝒪 𝑀 ) is reasonable, but Newton’s method is not.



Approximate 2nd-order methods
The most successful optimization algorithms in machine learning, 
currently, are approximate 2nd-order methods.  Basically, these are 
algorithms that approximate ∇!ℒ@𝐻#$ using an 𝒪 𝑀 approximation.  
Some examples include:

• BFGS (Broyden-Fletcher-Goldfarb-Shanno) estimates the second 
derivative by computing first-differences of recent values of ∇!ℒ.  
LBFGS (limited-memory BGFS) limits the memory.

• Adam (Adaptive moment estimation) estimates both ℒ′ and ℒ′′ for 
each weight, independently of all other weights, using a running 
average of recent values of ∇!ℒ and ∇!ℒ %.



Line search

• A “line search” chooses a particular 
direction, 𝑑, and then finds an optimum 
scalar gain, 𝑔, that minimizes ℒ(𝑤 + 𝑔𝑑).
• Finding the best value of 𝑔 requires testing 

many values, but not exponentially many.  
Using a golden-section search, you can 
often find a good 𝑔 by testing only 6-10 
values.
• If the directions are chosen well, this 

method can converge very quickly 

Conjugate gradient descent uses a series of 
line searches with well-chosen directions. 
Public domain image, 
https://commons.wikimedia.org/wiki/File:Con
jugate_gradient_illustration.svg
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Empirical gradients

Suppose that ℒ(𝑤) is not differentiable.  Can it be optimized?
The method of empirical gradients estimates the gradient as:

𝜕ℒ
𝜕𝑤&

≈
1
2𝜀

ℒ 𝑤 + 𝜀𝑒& − ℒ 𝑤 − 𝜀𝑒&

…where 𝑒& is a one-hot vector with a 1 in its 𝑚'( element, and 𝜀 is 
some small number (a hyperparameter!)
This method requires doing 2M forward-props per update step, instead 
of only one forward-prop and one back-prop.
It works pretty well if 𝜀 is small enough.



Coordinate search
The method of coordinate search skips over the 
gradient entirely.  Instead, it finds:

!𝑚, $𝑔 = argmin
!,#

ℒ 𝑤 + 𝑔𝑒!

𝑤 ← 𝑤 + $𝑔𝑒 $!
• Do a line-search on every coordinate direction, 
𝑒!, to find the value of that coordinate that 
minimizes the loss keeping all other coordinates 
unchanged.
• Update w to have the best value of that 

coordinate.
• If each line search has complexity K, then the 

total complexity is only 𝒪 𝐾𝑀 .

CC-BY 4.0, 
https://commons.wikimedia.org/
wiki/File:Coordinate_descent.svg



Quiz

Go to 
https://us.prairielearn.com/pl/course_instance/129874/assessment/23
31863, and try the quiz!

https://us.prairielearn.com/pl/course_instance/129874/assessment/2331863
https://us.prairielearn.com/pl/course_instance/129874/assessment/2331863


quiz

L=(w0-w1)^2 + w0^2 + w1^2
W=[9,1]
X dL/dw0 = 2(w0-w1) + 2w0=0 -> best w0 is w0=w1/2 -> [1/2,1]
X dL/dw1 = 2(w1-w0) + 2w1=0 -> best w1 is w1=w0/2 -> [9,9/2]
L([1/2,1]) = (1/2)^2 + (1/2)^2 + 1^2
L([9,9/2]) = (9/2)^2 + 9^2 + (9/2)^2
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The problem with 
local optimization

• All of the methods we’ve seen 
so far are “local optimization” 
methods: starting from some 
initial vector 𝑤, they converge 
to the nearest local minimum of 
ℒ 𝑤
• Oops: The nearest local 

minimum of ℒ 𝑤 might not be 
very good
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Random restarts

• The most common solution to 
the problem of bad local optima 
is the method of random 
restarts
• Basically, we just choose N 

different random starting 
locations (e.g., N might be 4, as 
shown, or maybe as large as 40)
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Random restarts

• From each of those random 
starting locations, use gradient 
descent to find the local 
optimum.
• Choose the best local optimum, 

and call it the global optimum.
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Advantages and disadvantages of the method 
of random restarts
• Advantage: Controllable computational complexity.  Decide how 

many random restarts you can afford based on the amount of 
computation you have available.
• Disadvantage: Not provably optimal.  There is no proof that this 

method finds the global optimum.



A provably optimal method: Simulated 
annealing
• Simulated annealing can be proven to find the global optimum.
• How it works: 

1. Instead of choosing −𝜂∇'ℒ as our update step, simulated annealing 
chooses an update step, 𝑑𝑤, at random

2. If ℒ 𝑤 + 𝑑𝑤 ≤ ℒ 𝑤 , then set 𝑤 ← 𝑤 + 𝑑𝑤.
3. If ℒ 𝑤 + 𝑑𝑤 > ℒ 𝑤 , then sometimes take the update step anyway, and 

sometimes don’t.  The probability of setting 𝑤 ← 𝑤 + 𝑑𝑤 is
𝑃 𝑤 ← 𝑤 + 𝑑𝑤 = min 1, 𝑒 ℒ ' ,ℒ '01' /3

• At first, the “temperature,” T, is large, so the step is usually taken.  As 
time goes on, 𝑇 → 0, so bad steps become increasingly unlikely.



1. Choose an update 
step at random

ℒ
𝑤

𝑡 = 0

?



2. If the update 
improves the loss, 
then take it.

ℒ
𝑤

𝑡 = 0
𝑡 = 1



3. If the update makes 
the loss worse, then 
take it anyway, with a 
probability of

𝑃 = 𝑒 ℒ " #ℒ "$%" /'
ℒ
𝑤

𝑡 = 0
𝑡 = 1



Particle Swarm 
Optimization
• PSO combines random 

restarts with simulated 
annealing.  Like simulated 
annealing, it is guaranteed to 
converge to a global 
optimum, if you run it long 
enough.
• Here is a video of PSO 

converging. CC-SA 4.0, Hennegrolsch, 
https://commons.wikimedia.org/wiki/File:PSO_swarm_behavio
ur_optimized_for_presentation.gif
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