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Review: Neural net is a universal approximator

* Suppose we have some function,
f (x), that we want to approximate
using a neural net

* |n the limit as N — oo, the network
shown here can approximate f (x)
with zero error




Review: Machine learning
/

e Start from random initial values of |
n
wW. 1
L== " 2f G,y
* Adjust w according to: | i=1
wew-—nV, L

* Continue until £ stops decreasing




The three types of machine learning error

» Approximation error/Underfitting: You don’t have enough hidden
nodes to achieve small L on the training corpus

* Generalization error/Overfitting: You don’t have enough training
data; optimum w on the training corpus is not also optimum on the
test corpus

* Optimization error: There is a value of w that achieves low L on the
training corpus, but finding it is too computationally expensive
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The optimization problem

e Given: a function L: W — R that maps from a set of possible weight
vectors, W, to the set of real numbers, R

* Find: a value w such that L(W) < L(w) forallw € W.



Example of the problem: Grid search
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Grid search of 2 hyperparameters, with 10 values each, requires testing
102 = 100 combinations. CC-SA 4.0, Alexander Elvers,

https://commons.wikimedia.org/wiki/File:Hyperparameter_Optimization_
using_Grid_Search.svg
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Review: Gradient descent
/

e Start from random initial values of |
n
wW. 1
L== " 2f G,y
* Adjust w according to: | i=1
wew-—nV, L

* Continue until £ stops decreasing




Problems with gradient descent, and a
program for fixing them during today’s lecture

1. If we choose 1 too large, the sequence of w’s might diverge. If we
choose 1 too small, the sequence of w’s might take a very long time

to converge.
* Solutions: Newton’s method, quasi-second-order methods, line search

2. It might not be possible to compute V,, L
* Solutions: empirical gradients, coordinate search

3. Gradient descent finds a local optimum, not a global optimum
* Solutions: simulated annealing, random restarts



Newton’s method

Newton proposed an iterative
method to find the zeros of a

function:
fw)
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CC-SA 3.0, Raul Pfeifer,
https://commons.wikimedia.org/wiki/File:Newtonlteration Ani.gif



https://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.gif

Newton’s method for machine learning: scalar w

* In machine learning, we’re trying to find minima of L(w), which are zero-
crossings of L'(w) =V, L, so Newton’s method becomes

o 1\ /
wew-=—5 : \ /
* Notice the similarity to Gradient descent: w « w — nL'. Newton’s ] \//
method is the same thing as setting the learning rateton = 1/L". 1~
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e If L(w) is quadratic, Newton’s method finds the minimum in one step:  hape/cammorsuwikimedia.org/wik

L(W) — a(W _ W)Z + me /File:Minimum_fonction_scilab.svg
L' alw—-w) _
L” =W a =W
* Near a local optimum, many loss functions are approximately quadratic,
so Newton’s method can often find an optimum in = 1 step

W e W —



Newton’s method for machine learning: vector w

c Ifw = [wg,.., Wwy_q1],then L' (W) =V, L = [ﬁ oL

owy’ T owp_q

], and the second

derivative is called the “Hessian:”

0L 0L
a—wg Owoo0wy,_1
H= s . s
0L 0L
Owy_ 0w, oW _4

* Newton’s method becomes:
wew-—V,L@H !

... which has a computational complexity of O{M3}. If M is millions, then gradient
descent (O{M}) is reasonable, but Newton’s method is not.



Approximate 2"¢-order methods

The most successful optimization algorithms in machine learning,
currently, are approximate 2"%-order methods. Basically, these are

algorithms that approximate V,, L@H ~ using an O{M} approximation.
Some examples include:

* BFGS (Broyden-Fletcher-Goldfarb-Shanno) estimates the second
derivative by computing first-differences of recent values of V,,, L.
LBFGS (limited-memory BGFS) limits the memory.

« Adam (Adaptive moment estimation) estimates both £ and L" for
each weight, independently of all other weights, using a running
average of recent values of V,,£ and (V,,£)?.



Line search

* A “line search” chooses a particular
direction, d, and then finds an optimum
scalar gain, g, that minimizes L(w + gd).

* Finding the best value of g requires testing

many values, but not exponentially many.
Using a golden-section search, you can
often find a good g by testing only 6-10 \\ /

values.

Conjugate gradient descent uses a series of

° |f the directions are Chosen We“, thiS line searches with well-chosen directions.
. Public domain image,
method can converge very quickly

https://commons.wikimedia.org/wiki/File:Con
jugate_gradient_illustration.svg
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Empirical gradients

Suppose that L(w) is not differentiable. Can it be optimized?

The method of empirical gradients estimates the gradient as:

0L 1
~ (L(W + ce,,) — L(w — eem))

ow,,

..Where e, is a one-hot vector with a 1 in its m!" element, and ¢ is
some small number (a hyperparameter!)

This method requires doing 2M forward-props per update step, instead
of only one forward-prop and one back-prop.

It works pretty well if € is small enough.



Coordinate search

The method of coordinate search skips over the
gradient entirely. Instead, it finds:
m, § = argmin L(w + ge,,,)
m.g
we—w+ Jes

* Do a line-search on every coordinate direction,
e, to find the value of that coordinate that
minimizes the loss keeping all other coordinates
unchanged.

e Update w to have the best value of that
coordinate.

* |f each line search has complexity K, then the
total complexity is only O{KM}.
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CC-BY 4.0,
https://commons.wikimedia.org/
wiki/File:Coordinate_descent.svg




QuIz

Go to
https://us.prairielearn.com/pl/course instance/129874/assessment/23

31863, and try the quiz!



https://us.prairielearn.com/pl/course_instance/129874/assessment/2331863
https://us.prairielearn.com/pl/course_instance/129874/assessment/2331863

quiz

L=(WO-W1)A2 + W02 + W1A2

W=[9,1]

X dL/dwO = 2(w0-w1) + 2w0=0 -> best w0 is wO=w1/2 -> [1/2,1]
X dL/dw1 = 2(w1l-w0) + 2w1=0 -> best w1l is wl=w0/2 -> [9,9/2]
L([1/2,1]) = (1/2)A2 + (1/2)72 + 1A2

L([9,9/2]) = (9/2)*2 + 972 + (9/2)"2
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* Random restarts
e Simulated annealing



The problem with

Neural Net Error Surface (Schematic)

local optimization ;

 All of the methods we’ve seen
so far are “local optimization”
methods: starting from some

initial vector w, they converge
to the nearest local minimum of
L(w)

* Oops: The nearest local
minimum of L(w) might not be 20y
very good
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R a n d O m re Sta rtS Neural Net Error Surface (Schematic)

* The most common solution to
the problem of bad local optima
is the method of random
restarts

—
T

o
I+
|
D

 Basically, we just choose N
different random starting
locations (e.g., N might be 4, as
shown, or maybe as large as 40) K

Training Error L(w)
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Random restarts

* From each of those random
starting locations, use gradient
descent to find the local
optimum.

* Choose the best local optimum,
and call it the global optimum.

Training Error L(w)

Neural Net Error Surface (Schematic)

0 0.5 1 1.5 2 25 3
Network Weight w



Advantages and disadvantages of the method
of random restarts

* Advantage: Controllable computational complexity. Decide how
many random restarts you can afford based on the amount of
computation you have available.

* Disadvantage: Not provably optimal. There is no proof that this
method finds the global optimum.



A provably optimal method: Simulated
annealing

e Simulated annealing can be proven to find the global optimum.

e How it works:

1. Instead of choosing —nV,, L as our update step, simulated annealing
chooses an update step, dw, at random

2. If L(w+dw) < L(w), thensetw « w + dw.

3. If L(w + dw) > L(w), then sometimes take the update step anyway, and
sometimes don’t. The probability of settingw « w + dw is

P(w < w + dw) = min(1, o (LOW)—L(w+dw))/T )

At first, the “temperature,” T, is large, so the step is usually taken. As
time goeson, T — 0, so bad steps become increasingly unlikely.




1. Choose an update

Neural Net Error Surface (Schematic)

step at random

Training Error L(w)
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2 . | f t h e u p d a te Neural Net Error Surface (Schematic)

improves the loss,
then take it. i

Training Error L(w)
o
I
|
D

t=1
-1}

0 0.5 1 1.5 2 25
Network Weight Uy



Neural Net Error Surface (Schematic)

3. If the update makes

the loss worse, then | -
take it anyway, witha 7 |\ t=o )
probability of .

P = e(L(W)—L(W+dW))/T Ll

Network Weight ukj



Particle Swarm
Optimization

* PSO combines random
restarts with simulated
annealing. Like simulated
annealing, it is guaranteed to
converge to a global
optimum, if you run it long
enough.

 Here is a video of PSO

converging. CC-SA 4.0, Hennegrolsch,
https://commons.wikimedia.org/wiki/File:PSO_swarm_behavio

ur_optimized_for_presentation.gif



Outline

* The three types of machine learning error
* The optimization problem

* Local optimization with a known gradient

* Gradient descent
* Newton’s method
* Line search
* Local optimization with unknown gradient
* Empirical gradients
* Coordinate search

* Global optimization
* Random restarts
e Simulated annealing



