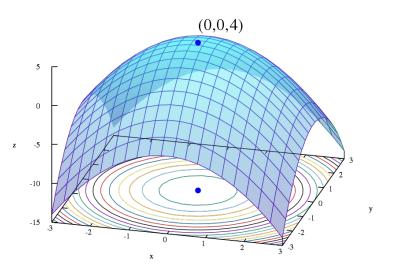
# CS440/ECE448 Lecture 11: Optimization

Mark Hasegawa-Johnson, 2/2023

Lecture slides: CC0





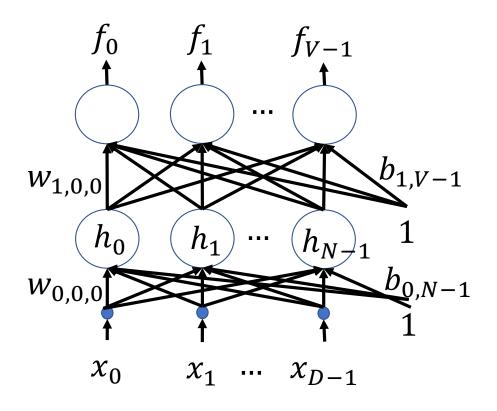
By IkamusumeFan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42043175

## Outline

- The three types of machine learning error
- The optimization problem
- Local optimization with a known gradient
  - Gradient descent
  - Newton's method
  - Line search
- Local optimization with unknown gradient
  - Empirical gradients
  - Coordinate search
- Global optimization
  - Random restarts
  - Simulated annealing

Review: Neural net is a universal approximator

- Suppose we have some function, f(x), that we want to approximate using a neural net
- In the limit as  $N \to \infty$ , the network shown here can approximate f(x) with zero error

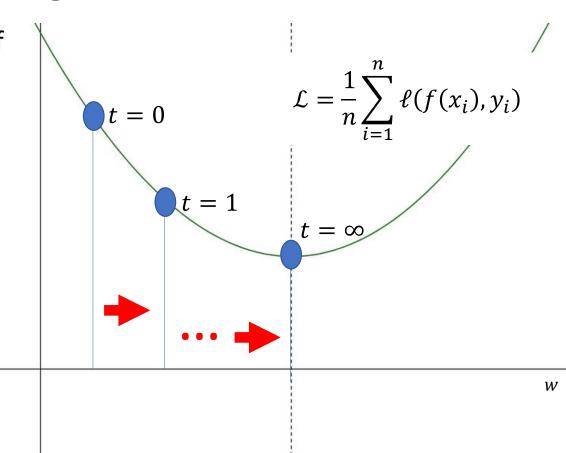


# Review: Machine learning

- Start from random initial values of *w*.
- Adjust *w* according to:

 $w \leftarrow w - \eta \nabla_w \mathcal{L}$ 

 $\bullet$  Continue until  ${\cal L}$  stops decreasing



# The three types of machine learning error

- <u>Approximation error/Underfitting</u>: You don't have enough hidden nodes to achieve small  $\mathcal{L}$  on the training corpus
- <u>Generalization error/Overfitting</u>: You don't have enough training data; optimum w on the training corpus is not also optimum on the test corpus
- **Optimization error**: There is a value of w that achieves low  $\mathcal{L}$  on the training corpus, but finding it is too computationally expensive

# Outline

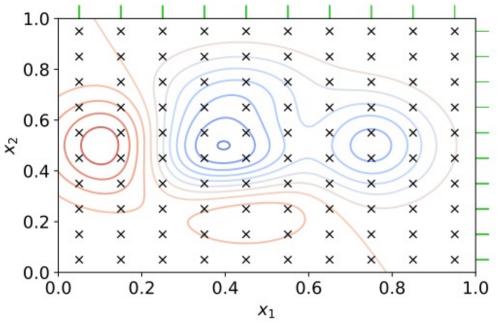
- The three types of machine learning error
- The optimization problem
- Local optimization with a known gradient
  - Gradient descent
  - Newton's method
  - Line search
- Local optimization with unknown gradient
  - Empirical gradients
  - Coordinate search
- Global optimization
  - Random restarts
  - Simulated annealing

#### The optimization problem

- Given: a function  $\mathcal{L}: \mathcal{W} \to \mathbb{R}$  that maps from a set of possible weight vectors,  $\mathcal{W}$ , to the set of real numbers,  $\mathbb{R}$
- Find: a value  $\widehat{w}$  such that  $\mathcal{L}(\widehat{w}) \leq \mathcal{L}(w)$  for all  $w \in \mathcal{W}$ .

### Example of the problem: Grid search

- Suppose we have M network weights
- Suppose we test K possible values of each weight
- Then the computational complexity is  $\mathcal{O}\{K^M\}$ .



Grid search of 2 hyperparameters, with 10 values each, requires testing  $10^2 = 100$  combinations. CC-SA 4.0, Alexander Elvers,

https://commons.wikimedia.org/wiki/File:Hyperparameter\_Optimization\_ using\_Grid\_Search.svg

# Outline

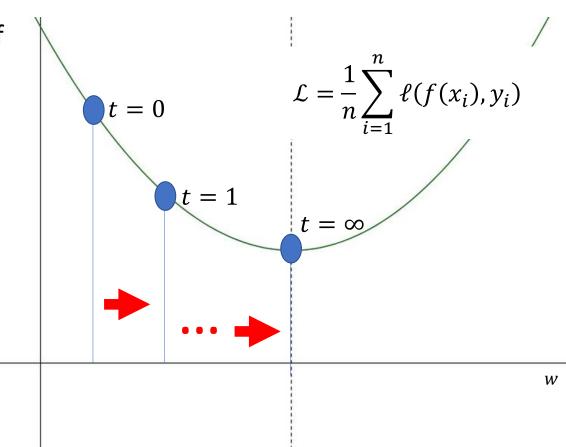
- The three types of machine learning error
- The optimization problem
- Local optimization with a known gradient
  - Gradient descent
  - Newton's method
  - Line search
- Local optimization with unknown gradient
  - Empirical gradients
  - Coordinate search
- Global optimization
  - Random restarts
  - Simulated annealing

## Review: Gradient descent

- Start from random initial values of *w*.
- Adjust *w* according to:

 $w \leftarrow w - \eta \nabla_w \mathcal{L}$ 

 $\bullet$  Continue until  ${\cal L}$  stops decreasing



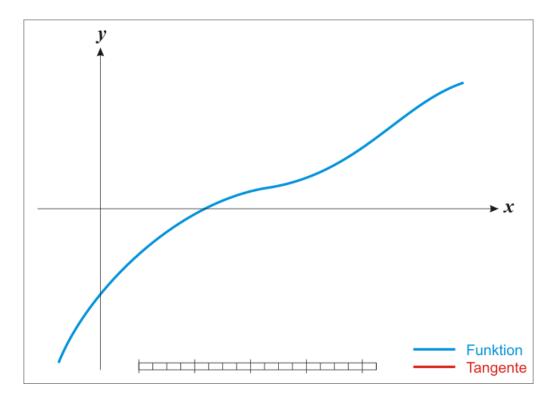
# Problems with gradient descent, and a program for fixing them during today's lecture

- 1. If we choose  $\eta$  too large, the sequence of w's might diverge. If we choose  $\eta$  too small, the sequence of w's might take a very long time to converge.
  - Solutions: Newton's method, quasi-second-order methods, line search
- 2. It might not be possible to compute  $\nabla_w \mathcal{L}$ 
  - Solutions: empirical gradients, coordinate search
- 3. Gradient descent finds a local optimum, not a global optimum
  - Solutions: simulated annealing, random restarts

#### Newton's method

Newton proposed an iterative method to find the zeros of a function:

$$w \leftarrow w - \frac{f(w)}{f'(w)}$$



CC-SA 3.0, Raul Pfeifer, https://commons.wikimedia.org/wiki/File:NewtonIteration\_Ani.gif

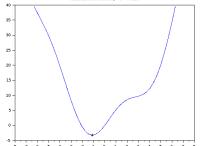
#### Newton's method for machine learning: scalar w

• In machine learning, we're trying to find minima of  $\mathcal{L}(w)$ , which are zerocrossings of  $\mathcal{L}'(w) = \nabla_w \mathcal{L}$ , so Newton's method becomes

$$w \leftarrow w - \frac{\mathcal{L}'}{\mathcal{L}''}$$

- Notice the similarity to Gradient descent:  $w \leftarrow w \eta \mathcal{L}'$ . Newton's method is the same thing as setting the learning rate to  $\eta = 1/\mathcal{L}''$ .
- If  $\mathcal{L}(w)$  is quadratic, Newton's method finds the minimum in one step:

$$\mathcal{L}(w) = a(w - \widehat{w})^2 + \mathcal{L}_{min}$$
$$w \leftarrow w - \frac{\mathcal{L}'}{\mathcal{L}''} = w - \frac{a(w - \widehat{w})}{a} = \widehat{w}$$



CC-SA 3.0, Cdang, https://commons.wikimedia.org/wiki /File:Minimum\_fonction\_scilab.svg

• Near a local optimum, many loss functions are approximately quadratic, so Newton's method can often find an optimum in  $\approx 1$  step

Newton's method for machine learning: vector w

• If  $w = [w_0, ..., w_{M-1}]$ , then  $\mathcal{L}'(w) = \nabla_w \mathcal{L} = \left[\frac{\partial \mathcal{L}}{\partial w_0}, ..., \frac{\partial \mathcal{L}}{\partial w_{M-1}}\right]$ , and the second derivative is called the "Hessian:"

$$H = \begin{bmatrix} \frac{\partial^{2} \mathcal{L}}{\partial w_{0}^{2}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial w_{0} \partial w_{M-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} \mathcal{L}}{\partial w_{M-1} \partial w_{0}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial w_{M-1}^{2}} \end{bmatrix}$$

Newton's method becomes:

$$w \leftarrow w - \nabla_w \mathcal{L}@H^{-1}$$

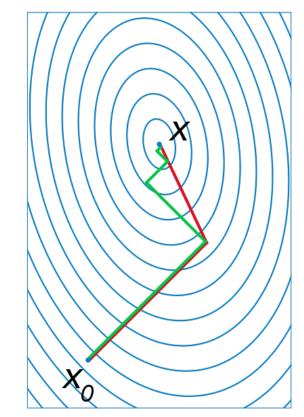
... which has a computational complexity of  $\mathcal{O}\{M^3\}$ . If M is millions, then gradient descent ( $\mathcal{O}\{M\}$ ) is reasonable, but Newton's method is not.

# Approximate 2<sup>nd</sup>-order methods

- The most successful optimization algorithms in machine learning, currently, are approximate 2<sup>nd</sup>-order methods. Basically, these are algorithms that approximate  $\nabla_w \mathcal{L} @ H^{-1}$  using an  $\mathcal{O}\{M\}$  approximation. Some examples include:
- BFGS (Broyden-Fletcher-Goldfarb-Shanno) estimates the second derivative by computing first-differences of recent values of ∇<sub>w</sub>L.
  LBFGS (limited-memory BGFS) limits the memory.
- Adam (Adaptive moment estimation) estimates both  $\mathcal{L}'$  and  $\mathcal{L}''$  for each weight, independently of all other weights, using a running average of recent values of  $\nabla_w \mathcal{L}$  and  $(\nabla_w \mathcal{L})^2$ .

#### Line search

- A "line search" chooses a particular direction, d, and then finds an optimum scalar gain, g, that minimizes  $\mathcal{L}(w + gd)$ .
- Finding the best value of g requires testing many values, but not exponentially many. Using a golden-section search, you can often find a good g by testing only 6-10 values.
- If the directions are chosen well, this method can converge very quickly



Conjugate gradient descent uses a series of line searches with well-chosen directions. Public domain image,

https://commons.wikimedia.org/wiki/File:Con jugate\_gradient\_illustration.svg

# Outline

- The three types of machine learning error
- The optimization problem
- Local optimization with a known gradient
  - Gradient descent
  - Newton's method
  - Line search
- Local optimization with unknown gradient
  - Empirical gradients
  - Coordinate search
- Global optimization
  - Random restarts
  - Simulated annealing

### **Empirical gradients**

Suppose that  $\mathcal{L}(w)$  is not differentiable. Can it be optimized? The method of empirical gradients estimates the gradient as:

$$\frac{\partial \mathcal{L}}{\partial w_m} \approx \frac{1}{2\varepsilon} \left( \mathcal{L}(w + \varepsilon e_m) - \mathcal{L}(w - \varepsilon e_m) \right)$$

...where  $e_m$  is a one-hot vector with a 1 in its  $m^{th}$  element, and  $\varepsilon$  is some small number (a hyperparameter!)

This method requires doing 2M forward-props per update step, instead of only one forward-prop and one back-prop.

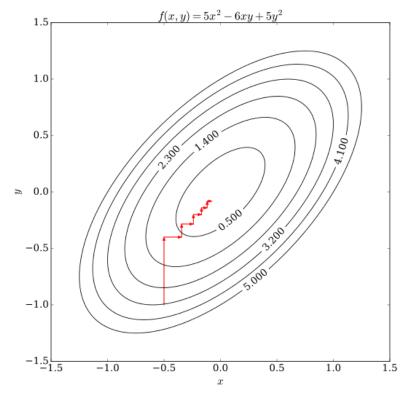
It works pretty well if  $\varepsilon$  is small enough.

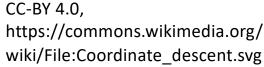
#### Coordinate search

The method of coordinate search skips over the gradient entirely. Instead, it finds:

$$\widehat{m}, \widehat{g} = \operatorname*{argmin}_{m,g} \mathcal{L}(w + ge_m)$$
$$w \leftarrow w + \widehat{g}e_{\widehat{m}}$$

- Do a line-search on every coordinate direction,  $e_m$ , to find the value of that coordinate that minimizes the loss keeping all other coordinates unchanged.
- Update w to have the best value of that coordinate.
- If each line search has complexity K, then the total complexity is only  $\mathcal{O}{KM}$ .





#### Quiz

#### Go to

https://us.prairielearn.com/pl/course\_instance/129874/assessment/23 31863, and try the quiz!

#### quiz

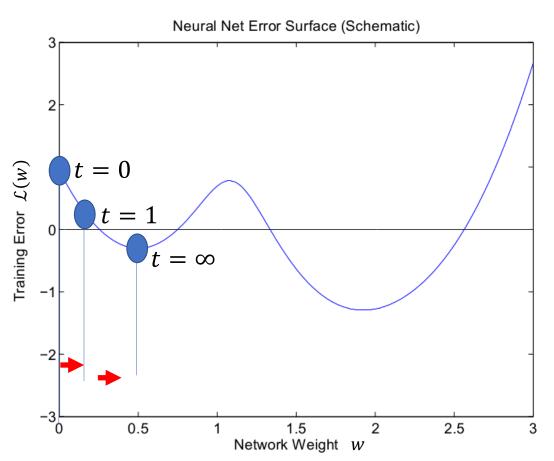
L=(w0-w1)<sup>2</sup> + w0<sup>2</sup> + w1<sup>2</sup> W=[9,1] X dL/dw0 = 2(w0-w1) + 2w0=0 -> best w0 is w0=w1/2 -> [1/2,1] X dL/dw1 = 2(w1-w0) + 2w1=0 -> best w1 is w1=w0/2 -> [9,9/2] L([1/2,1]) = (1/2)<sup>2</sup> + (1/2)<sup>2</sup> + 1<sup>2</sup> L([9,9/2]) = (9/2)<sup>2</sup> + 9<sup>2</sup> + (9/2)<sup>2</sup>

# Outline

- The three types of machine learning error
- The optimization problem
- Local optimization with a known gradient
  - Gradient descent
  - Newton's method
  - Line search
- Local optimization with unknown gradient
  - Empirical gradients
  - Coordinate search
- Global optimization
  - Random restarts
  - Simulated annealing

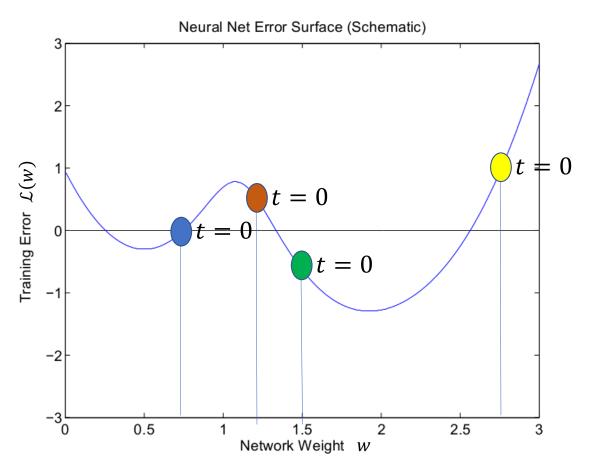
# The problem with local optimization

- All of the methods we've seen so far are "local optimization" methods: starting from some initial vector w, they converge to the nearest local minimum of L(w)
- <u>Oops</u>: The nearest local minimum of *L(w)* might not be very good



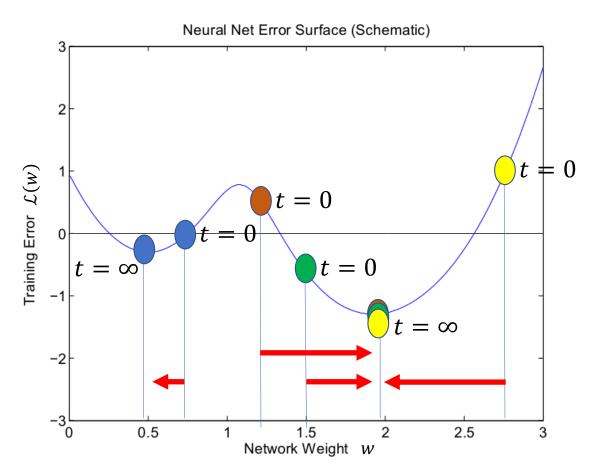
# Random restarts

- The most common solution to the problem of bad local optima is the method of random restarts
- Basically, we just choose N different random starting locations (e.g., N might be 4, as shown, or maybe as large as 40)



# Random restarts

- From each of those random starting locations, use gradient descent to find the local optimum.
- Choose the best local optimum, and call it the global optimum.



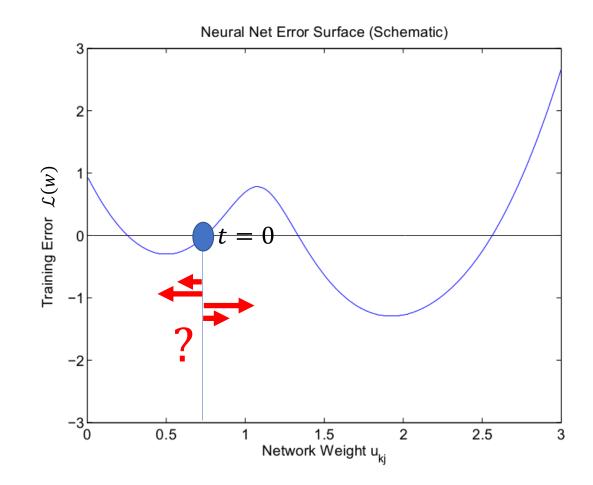
# Advantages and disadvantages of the method of random restarts

- Advantage: Controllable computational complexity. Decide how many random restarts you can afford based on the amount of computation you have available.
- Disadvantage: Not provably optimal. There is no proof that this method finds the global optimum.

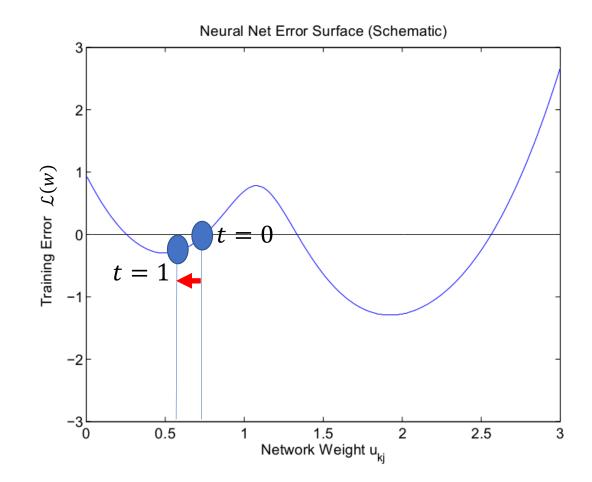
# A provably optimal method: Simulated annealing

- Simulated annealing can be proven to find the global optimum.
- How it works:
  - 1. Instead of choosing  $-\eta \nabla_w \mathcal{L}$  as our update step, simulated annealing chooses an update step, dw, at random
  - 2. If  $\mathcal{L}(w + dw) \leq \mathcal{L}(w)$ , then set  $w \leftarrow w + dw$ .
  - 3. If  $\mathcal{L}(w + dw) > \mathcal{L}(w)$ , then <u>sometimes</u> take the update step anyway, and sometimes don't. The probability of setting  $w \leftarrow w + dw$  is  $P(w \leftarrow w + dw) = \min(1, e^{(\mathcal{L}(w) \mathcal{L}(w + dw))/T})$
- At first, the "temperature," T, is large, so the step is usually taken. As time goes on,  $T \rightarrow 0$ , so bad steps become increasingly unlikely.

# 1. Choose an update step at random

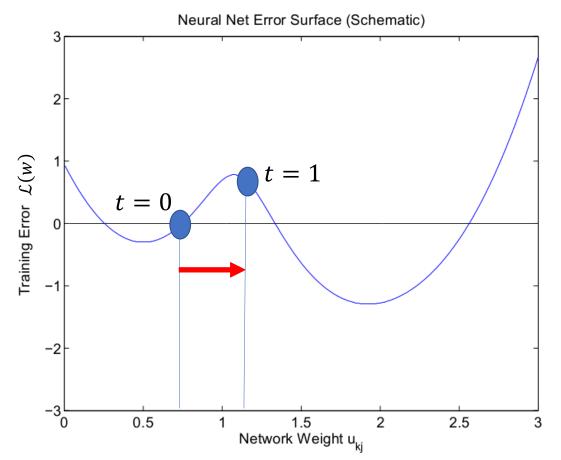


# 2. If the update improves the loss, then take it.



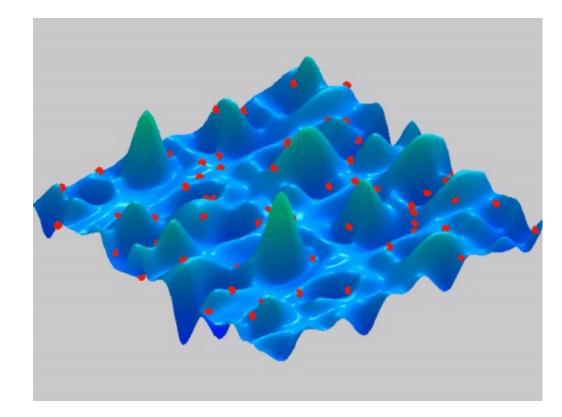
3. If the update makes the loss worse, then take it anyway, with a probability of

$$P = e^{\left(\mathcal{L}(w) - \mathcal{L}(w + dw)\right)/T}$$



# Particle Swarm Optimization

- PSO combines random restarts with simulated annealing. Like simulated annealing, it is guaranteed to converge to a global optimum, if you run it long enough.
- Here is a video of PSO converging.



CC-SA 4.0, Hennegrolsch, https://commons.wikimedia.org/wiki/File:PSO\_swarm\_behavio ur\_optimized\_for\_presentation.gif

## Outline

- The three types of machine learning error
- The optimization problem
- Local optimization with a known gradient
  - Gradient descent
  - Newton's method
  - Line search
- Local optimization with unknown gradient
  - Empirical gradients
  - Coordinate search
- Global optimization
  - Random restarts
  - Simulated annealing