CSA40/ECEA48 Lecture 8: Mmoo
Linear Classifiers

Aliza Aufrichtig @ @alizauf - Mar 4 v
Garlic halved horizontally = nature's Voronoi diagram?

- t,
S
k

en.wikipedia.org/wiki/Voronoi_d...

QO 12 a4 Qs O

Outline

* Linear Classifiers
* Gradient descent
* Cross-entropy

e Softmax

Linear classifier: Notation

* The observation x = [xg, ..., Xp_1] is a real-valued vector (D is its
dimension)

* The class label y € Y is drawn from some finite set of class labels.
* Usually the output vocabulary, Y, is some set of strings. For

convenience, though, we usually map the class labels to a sequence
of integers, Y = {0, ...,V — 1}, where V is the vocabulary size

Linear classifier: Definition

A linear classifier is defined by

f(x) = argmaxw; @x + by,
K

* @ means matrix product or dot product, w, @x = ?;01 XjWy

* Wy, by, are the weight vector and bias corresponding to class k.

* There are a total of V(D + 1) trainable parameters:
(# params) = (# classes)x(len(wk) + len(bk))
=V(D +1)

Example

Consider a two-class classification
problem, with the biases by, =
b; = 0, and

Wo = [Zrl]

wy = [1,2]

Example

“‘V
Notice that in the two-class case, the
equation
f(x) = argmaxw; @x + by \
k %
Simplifies to \ N b_ W

"’W//

1 Wl@x + b]_ > Wo@x + bO
f(x) N 0 Wl@x + b]_ < Wo@x + bO

The class boundary is the line whose
equation is
(wy —wo)@x + (by —by) =0

flx)=0

Multi-class linear
classifier

In a general multi-class linear
classifier,

f(x) = argmax w; @x + by
K

The boundary between class k and
class [is the line (or plane, or
hyperplane) given by the equation

(W — wy)@x + (by — by) = 0

f=1fx) =2 fx)=3

Tf(x) = 4
fx) =0

f(x) =8

f(x) =11 f(x) =42

fay=15 TP =16 . _ 17

f(x) =19

Voronoi regions

The classification regions in a linear
classifier are called Voronoi regions.

A Voronoi region is a region that is

e Convex (if u and v are points in the

region, then every point on the line

segment uv connecting them is
also in the region)

* Bounded by piece-wise linear
boundaries

f@ =110 =20 fG)=3"

) = 4
f() =0

f(x)=8 f(x) =5

f(X): -

fo) =11 e

) =1
7 f(x) =14

e /=1

f(x) =17

f(x) =19

Outline

 Gradient descent
* Cross-entropy
e Softmax

Training token x; of

Gradient descent classy; =1

Suppose we have training tokens 8 | e
(x;,¥;), and we have some initial ,
class vectors wy and w;. We want x Z
to update them as
WO « WO - TIVWOL A4, WO
W]_ <_W1_77VW1L h x \ I, \ \ |
..where L is some loss function. nat
What loss function makes sense? ’

7/
/
/
7/
7/
/
/
/
/

/

Training token x; of classy; = 0

/ero-one loss function

The most obvious loss function for
a classifier is its classification error
rate,

1 n
L= EZ £(f (), v1)

Where £(¥,y) is the zero-one loss
function,

. 0 y=y
i’(y,y)={1 5 %y

Non-differentiable!

The problem with the zero-one
loss function is that it’s not
differentiable:

Vi (£ (),)
_08(f(x),9)
of @)

(0 f) %y
={+o0 f(x)=y*
_OO fx) =y~

Vivo f (%)

£(f(x),y),

Outline

* Cross-entropy
e Softmax

One-hot vectors

A one-hot vector is a binary vector in which all
elements are 0 except for a single element
that’s equal to 1.

Example: Binary classifier

Consider the classifier
f(xi) — [fO(xi)r fl(xi)]r

1 ¢ =argmaxw;,@x + by
fc(xi) = k

0 otherwise

... with two classes. Then the
classification regions might look like
this.

fx) = [0

N

77

D

3|
|

&

%
t'. V1/

FaY
(]
A\
n

.

f(x) = [1,0]

Example: Multi-Class

Consider the classifier

f(x) = o), s fr—1(x)]

1 ¢ =argmaxw;,@x + by
fc(xi) — { k
0 otherwise

... with 20 classes. Then some of the
classifications might look like this.

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

Xq

Using one-hot vectors to calculate the loss

» Suppose that the output is a one-hot vector. Then the goal of the
classifier is to set f.(x;) = 1 for the correct class, and f.(x;) = 0 for
all others.

* We can measure this by a formulg like:
1
L=~ logfy,(x)
i=1

In words:
* choose the y;th output of the classifier.

* If that outputis f,, (x;) = 1, then the loss is zero.
* If that output is f, (x;) < 1, then the loss is large (o if £, (x;) = 0).

Cross-entropy

This loss functi%n,

1
L=—= logfy,(x),
=1

is called cross-entropy. By
measuring the negative log-
probability of the correct class, we
are measuring the extra
uncertainty thatis added tothe ...,

system by classification errors. https://en.wikipedia.org/wiki/File:Ultra_slow-

motion_video_of glass tea _cup_smashed on_concrete floor.
webm

Cross-entropy of a one-hot vector is still not
differentiable!

Consider the classifier

f(xl) — [fO(xi)i "')fV—l(xi)]

1 ¢ =argmaxw;,@x + by,
fe(x;) = { K
0 otherwise

Unfortunately, the cross-entropy of a one-hot vector is still not
differentiable!

0 (X)) =1
L=—logfy,(x;) = {oo 2183 =0

Outline

e Softmax

The problem with cross-entropy: —log 0 = oo

Binary classifier with argmax output

* Cross-entropy is a great loss
function because —log1 =0, so

it measures no loss if the J 200
classifier has the right answer 1,50
F1.25 &
* The problem is that —log 0 = oo, [100
so if the classifier has the wrong 1 0.50
- 0.25
- 0.00

answer, the loss function is
unmeasurably huge

The solution: avoid 0-valued outputs

Binary classifier with softmax output

* The solution is to modify f (x) so

that it never outputs exactly O AT e
% = | f 2.00
* Instead, we want f(x) to ¢ N gy gy e BB
approach 0 as the classifier gets B
more confident, but it should] 100 =
never actually reach zero 1050
| T 0.25
- 0.00

Argmax versus Softmax

The argmax version of the classifier is
1 ¢ =argmaxw;,@x + by,

f(x;) = [fo(xi), o) fy—1 (X1, fe(x;) = k

0 otherwise

We can smooth it by using the softmax function, defined as

exp(w.@x + b,)
v o exp(w@x + by)

f(xi) = [fo(xi), o) fy—1 (X1, fe(xi) =

The softmax function
This is called the softmax function:

softmax(x;) = [fo(xi); v fr-1 (xi)]

exp(w,@x + b,.)
r—oexp(w,@x + by)

softmax(w@x + b) =
Cc

Key features of the softmax

exp(w.@x + b
softmax(w@x + b) = V_lp(- c)
¢ r—o exp(w, @x + by)

Notice that the softmax function is (1) smooth, and (2)
behaves like a probability distribution:

* 0 < softmax(w@x + b) <1
Cc
« V-3 softmax(w@x + b) =1
Cc

QuIz

* Go to
https://us.prairielearn.com/pl/course instance/129874/assessment/
2330383 and try the quiz

https://us.prairielearn.com/pl/course_instance/129874/assessment/2330383
https://us.prairielearn.com/pl/course_instance/129874/assessment/2330383

Gradient of the cross-entropy of the softmax

Consider the classifier

exp(w.@x + b,)
v o exp(w @x + by)

fe(x) =

The softmax is smooth, so its logarithm is differentiable:

V-1

L=—logf, (x;) = —(Wyi@x + byi) + log Z exp(w;, @x + by,)
k=0

V. [— (fe(x;) — Dx; C =Y
We fr(x;)x; otherwise

...i1s the same as the gradient of MSE for linear
regression!

For linear regression, we had
V€7 = 2€;x;

For the softmax classifier with cross-entropy loss, we have
Vi L = € cX;

..where €; . is the error of the cth output of the classifier:

. _[fe6x) =1 c=y; (outputshould be 1)
““ | f.(x;) —0 otherwise(output should be 0)

Stochastic gradient descent |
W1 moves in

the direction
opposite x;

Suppose we have a training token
(x;,¥;), and we have some initial
class vectors w,. Using softmax
and cross-entropy loss, we can
update the weight vectors as

We & We — NE€ X

W moves in
...where ‘ - \ the direction

€. = fe(x) — 1 C=Y; A of X;
Y f.(x;) — 0 otherwise % +

Training token x; of classy; = 0

Outline

* Linear Classifiers: f(x) = argmaxw; @x + by,
k

Gradient descent: w, < w, —nV,, L

Cross-entropy: L = —%Z?zl log fy,(x;)

exp(w.@x+b.)
YV_Lexp(wr@x+by)

Softmax: softmax(w@x + b) =
Cc

Gradient of the cross-entropy of the softmax:
e = {fc(xi) -1 ¢ = y; (output should be 1)
i,c —

We < We = 1€ c X, f.(x;) — 0 otherwise(output should be 0)

