
CS440/ECE448 Lecture 8:
Linear Classifiers

Mark Hasegawa-Johnson, 2/2023
Lecture slides CC0: .

Outline

• Linear Classifiers
• Gradient descent
• Cross-entropy
• Softmax

Linear classifier: Notation

• The observation 𝑥 = [𝑥!, … , 𝑥"#$] is a real-valued vector (𝐷 is its
dimension)
• The class label 𝑦 ∈ 𝒴 is drawn from some finite set of class labels.
• Usually the output vocabulary, 𝒴, is some set of strings. For

convenience, though, we usually map the class labels to a sequence
of integers, 𝒴 = 0,… , 𝑉 − 1 , where 𝑉 is the vocabulary size

Linear classifier: Definition

A linear classifier is defined by
𝑓(𝑥) = argmax

%
𝑤%@𝑥 + 𝑏%

• @ means matrix product or dot product, 𝑤%@𝑥 = ∑&'!"#$ 𝑥&𝑤%,&
• 𝑤% , 𝑏% are the weight vector and bias corresponding to class 𝒌.

• There are a total of 𝑉(𝐷 + 1) trainable parameters:
params = # classes × len 𝑤% + len 𝑏%

= 𝑉(𝐷 + 1)

Example

Consider a two-class classification
problem, with the biases 𝑏! =
𝑏$ = 0, and

𝑤! = 2,1
𝑤$ = [1,2] 𝑤!

𝑤"

Example

Notice that in the two-class case, the
equation

𝑓(𝑥) = argmax
!

𝑤!@𝑥 + 𝑏!

Simplifies to

𝑓(𝑥) = /1 𝑤"@𝑥 + 𝑏" > 𝑤#@𝑥 + 𝑏#
0 𝑤"@𝑥 + 𝑏" < 𝑤#@𝑥 + 𝑏#

The class boundary is the line whose
equation is

𝑤" − 𝑤# @𝑥 + 𝑏" − 𝑏# = 0

𝑓 𝑥 = 0

𝑓(𝑥) = 1

𝑤!

𝑤"

Multi-class linear
classifier
In a general multi-class linear
classifier,

𝑓(𝑥) = argmax
%

𝑤%@𝑥 + 𝑏%

The boundary between class 𝑘 and
class 𝑙 is the line (or plane, or
hyperplane) given by the equation

𝑤) − 𝑤% @𝑥 + 𝑏) − 𝑏% = 0

𝑥!

𝑥"

𝒇(𝒙) = 0

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16
𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19

Voronoi regions

The classification regions in a linear
classifier are called Voronoi regions.
A Voronoi region is a region that is
• Convex (if 𝑢 and 𝑣 are points in the

region, then every point on the line
segment 𝑢𝑣 connecting them is
also in the region)
• Bounded by piece-wise linear

boundaries

𝑥!

𝑥"

𝒇(𝒙) = 0

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16
𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19

Outline

• Linear Classifiers
• Gradient descent
• Cross-entropy
• Softmax

Gradient descent

Suppose we have training tokens
(𝑥* , 𝑦*), and we have some initial
class vectors 𝑤! and 𝑤$. We want
to update them as

𝑤! ← 𝑤! − 𝜂∇+!ℒ
𝑤$ ← 𝑤$ − 𝜂∇+"ℒ

…where ℒ is some loss function.
What loss function makes sense?

𝑤!

𝑤"

Training token 𝑥# of
class 𝑦# = 1

Training token 𝑥# of class𝑦# = 0

Zero-one loss function

The most obvious loss function for
a classifier is its classification error
rate,

ℒ =
1
𝑛
O
*'$

,

ℓ 𝑓 𝑥* , 𝑦*

Where ℓ Q𝑦, 𝑦 is the zero-one loss
function,

ℓ Q𝑦, 𝑦 = R0 Q𝑦 = 𝑦
1 Q𝑦 ≠ 𝑦

𝑤!

𝑤"

Error

Error

Non-differentiable!

The problem with the zero-one
loss function is that it’s not
differentiable:

∇+!ℓ 𝑓 𝑥 , 𝑦

=
𝜕ℓ 𝑓 𝑥 , 𝑦
𝜕𝑓 𝑥

∇+!𝑓(𝑥)

= U
0 𝑓 𝑥 ≠ 𝑦
+∞ 𝑓 𝑥 = 𝑦-

−∞ 𝑓 𝑥 = 𝑦#

𝑓 𝑥 − 𝑦

ℓ 𝑓(𝑥), 𝑦 = R
0 𝑓(𝑥) = 𝑦
1 𝑓(𝑥) ≠ 𝑦

Outline

• Linear Classifiers: multi-class and 2-class
• Gradient descent
• Cross-entropy
• Softmax

One-hot vectors

A one-hot vector is a binary vector in which all
elements are 0 except for a single element
that’s equal to 1.

Example: Binary classifier

Consider the classifier
𝑓 𝑥# = 𝑓! 𝑥# , 𝑓"(𝑥#) ,

𝑓. 𝑥* = W
1 𝑐 = argmax

%
𝑤%@𝑥 + 𝑏%

0 otherwise

… with two classes. Then the
classification regions might look like
this.

𝑓 𝑥 = [1,0]

𝑓 𝑥 = [0,1]

𝑤!

𝑤"

Example: Multi-Class
Consider the classifier

𝑓(𝑥*) = 𝑓!(𝑥*), … , 𝑓/#$(𝑥*)

𝑓. 𝑥* = W
1 𝑐 = argmax

%
𝑤%@𝑥 + 𝑏%

0 otherwise

… with 20 classes. Then some of the
classifications might look like this.

𝑥!

𝑥"

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

𝑓(𝑥) =

0
0
⋮
0
1

𝑓(𝑥) =

0
0
⋮
1
0

𝑓(𝑥) =

1
0
⋮
0
0

𝑓(𝑥) =

0
1
⋮
0
0

Using one-hot vectors to calculate the loss
• Suppose that the output is a one-hot vector. Then the goal of the

classifier is to set 𝑓. 𝑥* = 1 for the correct class, and 𝑓. 𝑥* ≈ 0 for
all others.
• We can measure this by a formula like:

ℒ = −
1
𝑛
O
*'$

,

log 𝑓0# 𝑥*

In words:
• choose the 𝑦*th output of the classifier.
• If that output is 𝑓0# 𝑥* = 1, then the loss is zero.
• If that output is 𝑓0# 𝑥* < 1, then the loss is large (∞ if 𝑓0# 𝑥* = 0).

Cross-entropy

This loss function,

ℒ = −
1
𝑛
O
*'$

,

log 𝑓0# 𝑥* ,

is called cross-entropy. By
measuring the negative log-
probability of the correct class, we
are measuring the extra
uncertainty that is added to the
system by classification errors.

CC-SA 4.0,
https://en.wikipedia.org/wiki/File:Ultra_slow-
motion_video_of_glass_tea_cup_smashed_on_concrete_floor.
webm

Cross-entropy of a one-hot vector is still not
differentiable!

Consider the classifier
𝑓(𝑥*) = 𝑓!(𝑥*), … , 𝑓/#$(𝑥*)

𝑓. 𝑥* = W
1 𝑐 = argmax

%
𝑤%@𝑥 + 𝑏%

0 otherwise

Unfortunately, the cross-entropy of a one-hot vector is still not
differentiable!

ℒ = − log 𝑓0# 𝑥* = W
0 𝑓0# 𝑥* = 1
∞ 𝑓0# 𝑥* = 0

Outline

• Linear Classifiers: multi-class and 2-class
• Gradient descent
• One-hot vectors
• Softmax

The problem with cross-entropy: −log 0 = ∞

• Cross-entropy is a great loss
function because −log 1 = 0, so
it measures no loss if the
classifier has the right answer
• The problem is that −log 0 = ∞,

so if the classifier has the wrong
answer, the loss function is
unmeasurably huge

The solution: avoid 0-valued outputs

• The solution is to modify 𝑓(𝑥) so
that it never outputs exactly 0
• Instead, we want 𝑓(𝑥) to

approach 0 as the classifier gets
more confident, but it should
never actually reach zero

The argmax version of the classifier is

𝑓 𝑥* = 𝑓! 𝑥* , … , 𝑓/#$ (𝑥*) , 𝑓. 𝑥* = W
1 𝑐 = argmax

%
𝑤%@𝑥 + 𝑏%

0 otherwise

We can smooth it by using the softmax function, defined as

𝑓 𝑥* = 𝑓! 𝑥* , … , 𝑓/#$ (𝑥*) , 𝑓. 𝑥* =
exp 𝑤.@𝑥 + 𝑏.

∑%'!/#$ exp 𝑤%@𝑥 + 𝑏%

Argmax versus Softmax

This is called the softmax function:

softmax 𝑥# = 𝑓! 𝑥# , … , 𝑓$%" (𝑥#)

softmax
&

(𝑤@𝑥 + 𝑏) =
exp 𝑤&@𝑥 + 𝑏&

∑'(!$%" exp 𝑤'@𝑥 + 𝑏'

The softmax function

Key features of the softmax

softmax
&

(𝑤@𝑥 + 𝑏) =
exp 𝑤&@𝑥 + 𝑏&

∑'(!$%" exp 𝑤'@𝑥 + 𝑏'

Notice that the softmax function is (1) smooth, and (2)
behaves like a probability distribution:
• 0 < softmax

&
(𝑤@𝑥 + 𝑏) < 1

• ∑&(!$%" softmax
&

(𝑤@𝑥 + 𝑏) = 1

Quiz

• Go to
https://us.prairielearn.com/pl/course_instance/129874/assessment/
2330383 and try the quiz

https://us.prairielearn.com/pl/course_instance/129874/assessment/2330383
https://us.prairielearn.com/pl/course_instance/129874/assessment/2330383

Gradient of the cross-entropy of the softmax

Consider the classifier

𝑓. 𝑥* =
exp 𝑤.@𝑥 + 𝑏.

∑%'!/#$ exp 𝑤%@𝑥 + 𝑏%
The softmax is smooth, so its logarithm is differentiable:

ℒ = − log 𝑓0# 𝑥* = − 𝑤0#@𝑥 + 𝑏0# + logO
%'!

/#$

exp 𝑤%@𝑥 + 𝑏%

∇+$ℒ = R
𝑓. 𝑥* − 1 𝑥* 𝑐 = 𝑦*
𝑓. 𝑥* 𝑥* otherwise

…is the same as the gradient of MSE for linear
regression!

For linear regression, we had
∇+𝜖*1 = 2𝜖*𝑥*

For the softmax classifier with cross-entropy loss, we have
∇+$ℒ = 𝜖*,.𝑥*

…where 𝜖*,. is the error of the cth output of the classifier:

𝜖*,. = R
𝑓. 𝑥* − 1 𝑐 = 𝑦* (output should be 1)
𝑓. 𝑥* − 0 otherwise(output should be 0)

Stochastic gradient descent
Suppose we have a training token
(𝑥* , 𝑦*), and we have some initial
class vectors 𝑤.. Using softmax
and cross-entropy loss, we can
update the weight vectors as

𝑤. ← 𝑤. − 𝜂𝜖*,.𝑥*
…where

𝜖*,. = R
𝑓. 𝑥* − 1 𝑐 = 𝑦*
𝑓. 𝑥* − 0 otherwise

𝑤! moves in
the direction
of 𝑥#

Training token 𝑥# of class𝑦# = 0

𝑤" moves in
the direction
opposite 𝑥#

Outline
• Linear Classifiers: 𝑓(𝑥) = argmax

!
𝑤!@𝑥 + 𝑏!

• Gradient descent: 𝑤6 ← 𝑤6 − 𝜂∇7!ℒ

• Cross-entropy: ℒ = − "
8
∑9:"
8 log 𝑓;" 𝑥9

• Softmax: softmax
6

(𝑤@𝑥 + 𝑏) = <=> 7!@@AB!
∑#$%
&'(<=> 7#@@AB#

• Gradient of the cross-entropy of the softmax:

𝑤6 ← 𝑤6 − 𝜂𝜖9,6𝑥9 , 𝜖9,6 = /
𝑓6 𝑥9 − 1 𝑐 = 𝑦9 (output should be 1)
𝑓6 𝑥9 − 0 otherwise(output should be 0)

