University of Illinois at Urbana-Champaign
 CS440/ECE448 Artificial Intelligence
 Exam 1
 Spring 2022

February 21, 2022

Your Name:

\qquad
Your NetID: \qquad

Instructions

- Please write your name on the top of every page.
- This will be a CLOSED BOOK, CLOSED NOTES exam. You are permitted to bring and use only one 8.5×11 page of hand-written notes, front and back.
- No electronic devices (phones, tablets, calculators, computers etc.) are allowed.
- No calculators are permitted. You need not simplify explicit numerical expressions.

Possibly Useful Formulas

$$
\text { Probability: } P(B=1 \mid A=1)=\frac{P(A=1, B=1)}{P(A=1)}
$$

Naïve Bayes: $P(X=x \mid Y=y) \approx \prod_{i=1}^{n} P\left(W=w_{i} \mid Y=y\right)$
Laplace Smoothing: $P(w)=\frac{\operatorname{Count}(w)+k}{\sum_{w} \operatorname{Count}(w)+k\left(1+\sum_{w} 1\right)}$
Perceptron: $\vec{w}_{y}=\vec{w}_{y}+\eta \vec{x}, \vec{w}_{f(\vec{x})}=\vec{w}_{f(\vec{x})}-\eta \vec{x}$
Linear Regression w/SGD: $\vec{w} \leftarrow \vec{w}-\frac{\eta}{2} \nabla_{\vec{w}} \varepsilon_{i}^{2}=\vec{w}-\eta \varepsilon_{i} \vec{x}_{i}$
Logistic Regression: $\nabla_{\vec{w}_{c}} \mathscr{L}_{i}=\nabla_{\vec{w}_{c}}\left(-\ln \frac{e^{\vec{w}_{c}^{T} \vec{x}_{i}}}{\sum_{k} e^{\vec{w}_{k} T_{\vec{x}}}}\right)=\left(\frac{e^{\vec{w}_{c}^{T} \vec{x}_{i}}}{\sum_{k} e^{\vec{e}_{k}^{T} \vec{x}_{i}}}-y_{i, c}\right) \vec{x}_{i}$
Neural Net: $\xi_{j}^{(l)}=b_{j}^{(l)}+\sum_{k} w_{j, k}^{(l)} h_{k}^{(l-1)}, \quad h_{j}^{(l)}=g^{(l)}\left(\xi_{j}^{(l)}\right)$
Back-Propagation: $\frac{\partial \mathscr{L}}{\partial h_{k}^{(l-1)}}=\sum_{j} \frac{\partial \mathscr{L}}{\partial h_{j}^{(l)}} \frac{\partial h_{j}^{(l)}}{\partial h_{k}^{(l-1)}}$
Pinhole Camera: $\frac{x^{\prime}}{f}=-\frac{x}{z}, \quad \frac{y^{\prime}}{f}=-\frac{y}{z}$

Question 1 (7 points)
Consider two binary random variables, X and Y. Suppose that

$$
\begin{aligned}
P(X=1) & =a \\
P(Y=1) & =b \\
P(X=1, Y=0) & =c
\end{aligned}
$$

In terms of a, b, and/or c, what is $P(Y=1 \mid X=1)$?

Question 2 (7 points)
You've been asked to create a naïve Bayes model of the candy produced by the Santa Claus Candy Company. As your training dataset, you've been given a box containing 80 pieces of candy, of which 8 are strawberry, 48 are raspberry, and 24 are blueberry. In terms of the Laplace smoothing parameter k, estimate the following probabilities:
P(flavor=strawberry|Santa Claus Candy Company)=

P(flavor=raspberry|Santa Claus Candy Company)=

P(flavor=blueberry|Santa Claus Candy Company)=

P(flavor=other|Santa Claus Candy Company)=

Question 3 (7 points)
Describe, in one sentence each, the purpose of (1) a training set, (2) a development test set, (3) an evaluation test set.

Question 4 (7 points)
You're trying to create a multi-class perceptron that will classify animals as being either fish, birds, or reptiles. Your feature vector is $\vec{x}=\left[x_{1}, x_{2}, x_{3}, 1\right]^{T}$, where
$x_{1}=$ fraction of time the animal spends under water
$x_{2}=$ fraction of time the animal spends on land
$x_{3}=$ fraction of time the animal spends flying

- Based on your extensive prior knowledge of zoology, you initialize your perceptron with the following weight vectors: $\vec{w}_{\text {fish }}=[1,0,0,0]^{T}, \vec{w}_{\text {reptile }}=[0,1,0,0]^{T}$, and $\vec{w}_{\text {bird }}=[0,0,1,0]^{T}$.
- Your first training token is a crocodile, for which $y=$ reptile, and $\vec{x}=[0.7,0.3,0,1]^{T}$.

After training with this training token, what are the numerical values of $\vec{w}_{\text {fish }}, \vec{w}_{\text {reptile }}$, and $\vec{w}_{\text {bird }}$? Assume a learning rate of $\eta=1$.

Question 5 (7 points)
In stochastic gradient descent, we train using one training token at a time. Suppose

$$
\begin{gathered}
\mathscr{L}=\left(\vec{w}^{T} \vec{x}-y\right)^{2} \\
\vec{w}=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
b
\end{array}\right], \quad \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right]
\end{gathered}
$$

In terms of $\vec{x}, \vec{w}, w_{1}, w_{2}, b, x_{1}, x_{2}$, and/or y, what is $\frac{d \mathscr{L}}{d w_{2}}$?

Question 6 (7 points)
Suppose that

$$
\begin{aligned}
f & =w_{1,1}^{(2)} h_{1}+w_{1,2}^{(2)} h_{2}+b^{(2)} \\
h_{1} & =\operatorname{ReLU}\left(w_{1,1}^{(1)} x_{1}+w_{1,2}^{(1)} x_{2}+b_{1}^{(1)}\right) \\
h_{2} & =\operatorname{ReLU}\left(w_{2,1}^{(1)} x_{1}+w_{2,2}^{(1)} x_{2}+b_{2}^{(1)}\right)
\end{aligned}
$$

Assume, for a particular training token, that $h_{1}>0$ and $h_{2}>0$. For that particular training token, what is $\frac{\partial f}{\partial w_{1,1}^{(1)}}$? Express your answer in terms of $x_{j}, h_{j}, w_{j, k}^{(l)}$, and/or $b_{k}^{(l)}$ for any values of j, k, and/or l that may be useful to you.

Question 7 (7 points)
In the real world, the (x, y, z) coordinates of Joe's face and Mike's face are $(14,3,7)$ and $(14,3,17)$, respectively, where z is distance from the camera. In the image plane $\left(x^{\prime}, y^{\prime}\right)$, which person (Joe or Mike) is closer to the center of the image (the point $\left(x^{\prime}, y^{\prime}\right)=(0,0)$), and why?

