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Your Name:

Your NetID:

Instructions

• Please write your name on the top of every page.

• Have your ID ready; you will need to show it when you turn in your exam.

• This will be a CLOSED BOOK, CLOSED NOTES exam. You are permitted to bring
and use only one 8.5x11 page of notes, front and back, handwritten or typed in a font size
comparable to handwriting.

• No electronic devices (phones, tablets, calculators, computers etc.) are allowed.

• SHOW YOUR WORK. Correct answers derivation may not receive full credit if you don’t
show your work.

• Make sure that your answer includes only the variables that it should include, but DO NOT
simplify explicit numerical expressions. For example, the answer x = 1

1+exp(−0.1) is MUCH
preferred (much easier for us to grade) than the answer x = 0.524979.
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Possibly Useful Formulas

P(X = x|Y = y)P(Y = y) = P(Y = y|X = x)P(X = x)

P(X = x) = ∑
y

P(X = x,Y = y)

E [ f (X ,Y )] = ∑
x,y

f (x,y)P(X = x,Y = y)

Precision,Recall =
T P

T P+FP
,

T P
T P+FN

MPE=MAP: f (x) = argmax(logP(Y = y)+ logP(X = x|Y = y))

Naive Bayes: P(X = x|Y = y)≈
n

∏
i=1

P(W = wi|Y = y)

Laplace Smoothing: P(X = x|Y = y) =
Count(X = x,Y = y)+ k

Count(Y = y)+ k|X |
, |X |= # possible distinct values of X

Fairness: P(Y |A) = P(Y |Ŷ ,A)P(Ŷ |A)
P(Ŷ |Y,A)

Linear Regression: εi = f (xi)− yi = b+w@xi− yi

Mean Squared Error: MSE =
1
n

n

∑
i=1

ε
2
i

Linear Classifier: f (x) = argmax
k

wk@x+b

Cross-Entropy: L =−1
n

n

∑
i=1

log fyi(xi)

Softmax: softmax
c

(w@x+b) =
exp(wc@x+bc)

∑
V−1
k=0 exp(wk@x+bk)

Softmax Error: εi,c =

{
fc(xi)−1 c = yi

fc(xi)−0 otherwise

Gradient Descent: w← w−η∇wL

Neural Net: h = ReLU(b0 +w0@x) , f = softmax(b1 +w1@h)

Back-Propagation:
∂L

∂h j
= ∑

k

∂L

∂ fk
× ∂ fk

∂h j
,

∂L

∂w0,k, j
=

∂L

∂hk
× ∂hk

∂w0,k, j

Consistent Heuristic: h(p)≤ d(p,r)+h(r)

Alpha-Beta Max Node: v = max(v,child); α = max(α,child)

Alpha-Beta Min Node: v = min(v,child); β = min(β ,child)

Variance Network: L =
1

n−1

n

∑
i=1

(
f2(xi)− ( f1(xi)− xi)

2
)2
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Unification: U = S(P) = S(Q); U ⇒∃x : Q; U ⇒∃x : P

Bayes Rule: P(Y = y|X = x) =
P(X = x|Y = y)P(Y = y)

∑y′ P(X = x|Y = y′)P(Y = y′)

Unnormalized Relevance: R̃( fc,xd) =
∂ fc

∂xd
xd fc

Normalized Relevance: R( fc,xd) =

∂ fc
∂xd

xd

∑d′
∂ fc
∂xd′

xd′
fc

Softmax: softmax
j

(e) =
exp(e j)

∑k exp(ek)

Softmax Deriv:
∂ softmaxm(e)

∂en
= softmax

m
(e)δ [m−n]− softmax

m
(e)softmax

n
(e), δ [m−n] =

{
1 m = n
0 m 6= n

Viterbi: vt( j) = max
i

vt−1(i)ai, jb j(xt)

Transformer: ci = softmax(qi@kT )@v

Pinhole Camera:
x′

f
=−x

z
,

y′

f
=−y

z
Convolution: wk,l ∗ xk,l = ∑

i
∑

j
wk−i,l− jxi, j

Kalman Prediction : µt|t−1 = µt−1|t−1 +µ∆, σ
2
t|t−1 = σ

2
t−1|t−1 +σ

2
∆

Kalman Gain : kt =
σ2

t|t−1

σ2
t|t−1 +σ2

ε

, σ
2
t|t = σ

2
t|t−1(1− kt)

Kalman Update: µt|t = µt|t−1 + kt
(
xt −

(
µt|t−1 +µε

))
Bellman Equation: U(s) = R(s)+ γ max

a ∑
s′

P(s′|s,a)U(s′)

Value Iteration: Ui(s) = R(s)+ γ max
a ∑

s′
P(s′|s,a)Ui−1(s′)

Policy Evaluation: Ui(s) = R(s)+ γ ∑
s′

P(s′|s,πi(s))Ui(s′)

Policy Improvement: πi+1(s) = argmax
a

R(s)+ γ ∑
s′

P(s′|s,a)Ui(s′)

Q-Learning: Qt+1(s,a) = Qt(s,a)+α (Qlocal(s,a)−Qt(s,a))

TD Learning: Qlocal(st ,at) = R(st)+ γ max
a′

Qt(st+1,a′)

SARSA: Qlocal(st ,at) = R(st)+ γQt(st+1,at+1)

Imitation Learning: L =− logπa(s)

Deep Q Learning: L =
1
2
(Qt(s,a)−Qlocal(s,a))

2

Actor-Critic: L =−∑
a

πa(s)Q(s,a)

Inverse Kinematics: Cobs = {q : ∃b : φb(q) ∈Wobs}
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Question 1 (7 points)
You have been assigned to create an AIAA — an artificially intelligent archeological assistant. Your
AIAA will automatically classify necklaces as being of either Atlantean or Numenorean manufacture
(Y ∈ {atlantis,numenor}). Each necklace is characterized by three observable features: the type of
metal (M ∈ {gold,silver,platinum}), the number of gemstones (0 ≤ N ≤ 49), and the weight of the
necklace, in grams, which is an integer in the range 1≤W ≤ 10,000.

(a) How many real numbers are required to specify the joint probability distribution P(M,N,W,Y )?
Why?

Solution: 2×3×50×10,000 parameters: one for each unique combination of the variables
(M,N,W,Y ). The probabilities must add up to one, so 2× 3× 50× 10,000− 1 = 2,999,999
is also an acceptable answer.

(b) How many real numbers are required to specify a naive Bayes approximation of P(M,N,W,Y ),
and what are they?

Solution: The parameters are:

• P(Y ) - two

• P(M|Y ) - 2×3 = 6

• P(N|Y ) - 2×50 = 100

• P(W |Y ) - 20,000

The total parameter count is 20,108.
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Question 2 (6 points)
Imagine a two-layer neural net with input vector x, output vector f , and with the following architecture:

fk = softmax(p)

pk = ∑
j

w2,k, jh j

h j = ReLU(z j)

z j = ∑
i

w1, j,ixi

What is ∂ pk
∂ z j

? Write your answer in terms of the variables xm, zm, hm, pm, fm, w1,m,n, and/or w2,m,n for
any values of m and n that you find to be convenient. Show the steps in the chain rule that are necessary
to derive your answer.

Solution:

∂ pk

∂ z j
=

∂ pk

∂h j

∂h j

∂ z j

= w2,k, ju(z j)
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Question 3 (6 points)
Prove that every consistent A* search heuristic is also admissible.

Solution: A consistent heuristic is defined as

h(p)≤ d(p,r)+h(r)

for any pair of nodes p and r. An admissible heuristic is defined as

h(p)≤ d(p,Goal)

which is a special case of the definition of consistent heuristic, specifically, for the case when
r = Goal, and h(Goal) = 0.
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Question 4 (6 points)
Consider the problem of trying to prove that birds aren’t real. You have the following goalset:

G = {NOT-REAL(birds)}

In the attempt to prove your goalset, you will make use of the following rule database:

D =


HAVE(u,wings) ⇒ FLY(u)

HAVE(x, feathers) ⇒ HAVE(x,scales)
FLY(y)∧HAVE(y,scales) ⇒ NOT-REAL(y)


(a) After one step of backward chaining, what is the goalset?

Solution:
G = {FLY(birds)∧HAVE(birds,scales)}

(b) There are two different goalsets that might result from the second step of backward chaining. What
are they?

Solution:

G = {HAVE(birds,wings)∧HAVE(birds,scales)}
G = {FLY(birds)∧HAVE(birds, feathers)}
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Question 5 (6 points)
Mary drinks a lot of coffee. At Espresso Royale (ER), half the time she buys espresso (b0,0 = 0.5),
half the time she buys latte (b0,1 = 0.5). After spending an hour at ER, she either buys another drink
from ER (with probability a0,0 =

1
3 ), or travels to Cafe Bene (CB) with probability a0,1 =

2
3 . At CB she

buys latte with probability b1,1 =
3
4 , and espresso with probability b1,0 =

1
4 . After spending an hour at

CB she either buys another drink at CB (with probability a1,1 =
4
5 ), or travels to ER (with probability

a1,0 =
1
5 ). On Saturday at noon she was seen at ER; at 1:00 she bought a latte. Conditioned on these

observations, what is the probability that she was at ER at 1:00? Be sure to express your answer in terms
of the variables am,n and bm,k, for appropriate values of m and k, before you substitute in the provided
numbers.

Solution:

P(Y1 = ER|Y0 = ER,X1 = latte =
P(Y1 = ER,X1 = latte|Y0 = ER)

P(X1 = latte|Y0 = ER)

=
a0,0b0,1

a0,1b1,1 +a0,0b0,1

=

(1
3

)(1
2

)(1
3

)(1
2

)
+
(2

3

)(3
4

)
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Question 6 (7 points)
Let (x,y,z) be the 3-dimensional position of a point in the real world, where x is measured in meters west
of your camera, y is measured in meters above your camera, and z is measured in meters north of your
camera (your camera is facing north). Your camera has a focal length of f meters; points on the film are
specified by the coordinates (x′,y′), measured in meters. Suppose that there are two parallel lines, in the
real world, whose images, in your camera, converge on the vanishing point (x′,y′) = (a,b). Specify the
location, in the real world, of one of those two lines. Your specification will probably be a pair of linear
equations in terms of the variables (x,y,z,a,b, f ), and in terms of two additional parameters that are not
given in this problem statement. What are the new parameters that you have to invent, and why?

Solution: The pinhole camera equations are

x′

f
=−x

z
,

y′

f
=−y

z

In the limit as z→ ∞, we have that

x′

f
=− lim

z→∞

x
z
= a,

y′

f
=− lim

z→∞

y
z
= b

if and only if

x =−
(

a
f

)
z+ x0

y =−
(

b
f

)
z+ y0

where (x0,y0) is a constant offset of the line, distinguishing it from all other parallel lines that
converge to the point (x′,y′). The constant offset must be invented because the information in the
problem statement is insufficient to determine it, because limz→∞

x0
z = 0 for any constant x0.
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Question 7 (6 points)
Imagine a one-layer CNN that computes its filter output, zk,l , from its input xi, j according to

zk,l = ∑
i, j

wk−i,l− jxi, j

The filter output is then passed through ReLU nonlinearities and then averaged to create the neural net
output, as

hk,l = ReLU(zk,l)

f =
1

mn

m−1

∑
k=0

n−1

∑
l=0

hk,l

The network is trained using using one step of stochastic gradient descent with input image x and output
target value y, using the loss function

L =
1
2
( f − y)2

In terms of any desired elements of f ,h,z,w, and/or x, what is ∂L
∂wi, j

? Be sure to show the derivation of
your answer using the chain rule.

Solution:

∂L

∂wi, j
= ∑

k,l

∂L

∂ f
∂ f

∂hk,l

∂hk,l

∂ zk,l

∂ zk,l

∂wi, j

=
1

mn

m−1

∑
k=0

n−1

∑
l=0

( f − y)u(zk,l)xk−i,l− j

CS440/ECE448 Artificial Intelligence Exam 3 May 9, 2023



Name: NetID: Page 11/19

Question 8 (7 points)
A robot is delivering drinks to people on the quad. The terrain is uncertain; it believes its current position
to be (xt|t−1,yt|t−1), but it is uncertain; these estimates have variances of (σ2

x,t|t−1,σ
2
y,t|t−1). In order to

inmprove the accuracy of its estimates, the robot takes a measurement of distances to nearby buildings;
the measurement specifies the robot’s location to be (xobs,yobs) with no bias, but with measurement
variances of (σ2

x,obs,σ
2
y,obs). How can it combine its previous belief with these new measurements in

order to find an improved estimate of its location, what is the value of the improved estimate, and what
is the variance of the improved estimate? Assume that the robot’s current estimate is independent of the
measurement noise, and that the x and y components of each are independent, and that the measurement
noise has zero expected value.

Solution: It can use the Kalman gain:

(kx,ky) =

(
σ2

x,t|t−1

σ2
x,t|t−1 +σ2

x,obs
,

σ2
y,t|t−1

σ2
y,t|t−1 +σ2

y,obs

)

The improved estimates are then:

(xt|t ,yt|t) =
(
kxxt|t−1 +(1− kx)xobs,kyyt|t−1 +(1− ky)yobs

)
,

with variances of:

(σ2
x,t|t ,σ

2
y,t|t) =

(
σ

2
x,t|t−1(1− kx),σ

2
y,t|t−1(1− ky)

)
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Question 9 (7 points)
Consider an MDP with two states (s ∈ {0,1}), two actions (a ∈ {0,1}), with rewards of R(0) = −10
and R(1) = 10, and with the following transition probabilities:

s′ P(s′|s = 0,a = 0) P(s′|s = 0,a = 1) P(s′|s = 1,a = 0) P(s′|s = 1,a = 1)
0 0.4 0.7 0.9 0.2
1 0.6 0.3 0.1 0.8

Consider trying to solve for the utilities of the two states, U(0) and U(1), assuming γ = 1
2 , using policy

iteration. Consider starting with the policy π1(0) = 0, π1(1) = 1. Write two equations that could be
solved to find the policy-dependent utilities U1(0) and U1(1) given this policy. Write your equations in
terms of the variables R(0), R(1), P(0|0,0), P(1|0,0), P(0|0,1), P(1|0,1), P(0|1,0), P(1|1,0), P(0|1,1),
P(1|1,1), and/or γ first, then substitute in the provided numerical values.

Solution:

U1(0) = R(0)+ γ

(
∑
s′

P(s′|s = 0,a = 0)U1(s′)

)

U1(1) = R(1)+ γ

(
∑
s′

P(s′|s = 1,a = 1)U1(s′)

)

With the values filled in, this is:

U1(0) =−10+
1
2
(0.4U1(0)+0.6U1(1))U1(1) = 10+

1
2
(0.2U1(0)+0.8U1(1))
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Question 10 (7 points)
Consider two different exploration vs. exploitation tradeoff strategies: epsilon-first, and epsilon-greedy.
Now consider a hybrid strategy in which you explore every (state,action) pair N = 1

ε
times first, then

exploit it 100(1− ε)% of the trials thereafter.

1. Find an advantage that epsilon-first and the hybrid strategy have, relative to epsilon-greedy.

2. Find an advantage that epsilon-greedy and the hybrid strategy have, relative to epsilon-first.

3. Find an advantage that either epsilon-first or epsilon-greedy have, relative to both of the other two
strategies.

Solution:

1. Both epsilon-first and the hybrid strategy learn a lot about the environment relatively quickly.

2. Both epsilon-greedy and the hybrid strategy will eventually have an infinite number of trials
for every (state,action) pair, so both strategies will eventually converge to perfect knowledge
of the environment.

3. Epsilon-first has the advantage that, after the first N = 1/ε trials of every (state,action) pair,
the rest of the trials are spent exploiting the available knowledge, i.e., maximizing reward.
Both epsilon-greedy and the hybrid strategy spend 100ε% of their trials exploring, during
which time they are not seeking to maximize reward.
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Question 11 (7 points)
Consider an MDP with two actions (a∈{R,L}), and three states (s∈{0,1,2}). The agent has been accu-
mulating its experiences in an experience replay buffer. The buffer now contains (state,action,reward,new
state) (s,a,r,s′) tuples for six randomly selected trials, as shown in this table:

Trial ID s a r s′

1 1 R 10 2
2 1 R 10 0
3 0 L 20 1
4 0 L 20 1
5 0 L 20 0
6 2 R 5 1

Using Laplace smoothing with a smoothing coefficient of k, what are P(s′|s= 0,a= L) for s′ ∈{0,1,2}?
Write down the general formula for Laplace smoothing, then fill in the numerical values for the problem.

Solution: The general formula for Laplace smoothing is

P(X = x|Y = y) =
Count(X = x,Y = y)+ k

Count(Y = y)+ k|X |
,

where |Y | is the number of logically distinct possible values of X . For this problem, the results are:

P(s′ = 0|s = 0,a = L) =
1+ k
3+3k

P(s′ = 1|s = 0,a = L) =
2+ k
3+3k

P(s′ = 2|s = 0,a = L) =
k

3+3k
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Question 12 (7 points)
Gepetto the toymaker is able to make 0, 1, or 2 wooden toys in any given day. The state of his shop is
well summarized by s =the number of toys that he has for sale. On May 8, 2023, he has st = 7 toys for
sale, and earns R(7) = $50. He decides to produce at = 2 new toys. On May 9, he learns that he now
has st+1 = 8 toys left in the store; on this day, he decides to produce at+1 = 0 new toys. Prior to the
May 8 action, he estimated that the quality of each (state,action) pair is as given in the following table:

Qt(s,a = 0) Qt(s,a = 1) Qt(s,a = 2)
s = 7 25 60 90
s = 8 10 100 30

Find two different ways in which Gepetto might update Qt(s,a) to compute Qt+1(s = 7,a = 2). Specif-
ically, find Qt+1(s = 7,a = 2) using both TD-learning and SARSA. Both updates should be written as
functions of the learning rate, α , and the discount factor, γ; there should be no other variables on the
right-hand-side of your answer.

Solution: Using TD-learning and SARSA, respectively, Qlocal is:

TD Learning: Qlocal(st ,at) = R(st)+ γ max
a′

Qt(st+1,a′)

SARSA: Qlocal(st ,at) = R(st)+ γQt(st+1,at+1)

Plugging in the numbers from this problem, we have

TD Learning: Qlocal(7,2) = 50+100γ

SARSA: Qlocal(7,2) = 50+10γ

The resulting Q-learning updates are

TD Learning: Qt+1(7,2) = 90+α(50+100γ−90)

SARSA: Qlocal(7,2) = 90+α(50+10γ−90)

which can also be written as:

TD Learning: Qt+1(7,2) = (1−α)90+α(50+100γ)

SARSA: Qlocal(7,2) = (1−α)90+α(50+10γ)

CS440/ECE448 Artificial Intelligence Exam 3 May 9, 2023



Name: NetID: Page 16/19

Question 13 (7 points)
Gepetto decides to implement deep-Q learning so that he can take advantage of much more information:
his new state variable is a vector of six measurements including the prices of the last three toys sold,
two measures of overall economic health, and the number of toys available for sale in his shop. Given
this state vector, his neural network computes a vector of hidden nodes h(s) = [h0(s), . . . ,hn−1(s)], then
computes three outputs corresponding to the three possible actions, a ∈ {0,1,2}. The three outputs of
his neural network are

Qt(s,a) =
n−1

∑
i=0

wt,a,ihi(s), a ∈ {0,1,2},

where wt,a,i are weights that are trained using stochastic gradient descent:

wt+1,a,i = wt,a,i−α
∂Lt

∂wt,a,i
(1)

Suppose Gepetto measures the state vector st , receives a reward of rt = 200, decides on the action
at = 2, and then measures the resulting state vector st+1 on the following day. On the basis of these
measurements, propose a loss function Lt whose derivative could be used to update the neural network
as shown in Eq. 1. Specify exactly the way in which your loss function depends on the discount factor
γ and on the neural network outputs that might be computed from input vectors st (Qt(st ,0),Qt(st ,1),
and/or Qt(st ,2)) and/or from input vector st+1 (Qt(st+1,0),Qt(st+1,1), and/or Qt(st+1,2)).

Solution: The action at+1 is not specified, so we can’t use SARSA, so let’s use TD-learning:

Qlocal(st ,at = 2) = R(st)+ γ max
a′

Qt(st+1,a′) = 200+ γ max
a′

Qt(st+1,a′)

A useful loss function might be the squared distance between Qt(st ,2) and Qlocal(st ,2), which is

L =
1
2

(
Qt(st ,2)−200− γ max

a′
Qt(st+1,a′)

)2
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Question 14 (7 points)
Denote the derivative of the yth output of a softmax w.r.t. the (i, j)th element of its weight matrix as

∂ softmaxy(w@x)
∂wi, j

= σ
′
y,i, j(w@x)

In both imitation learning and actor-critic learning, the agent chooses action a with probability πa(s) =
softmaxa(w@h(s)), where s is the state vector, h(s) is a vector of hidden nodes, and w is a weight
matrix. In both methods, wi, j is updated using the equation:

wi, j← wi, j−α
∂L

∂wi, j
,

where α is a learning rate, and L is a loss function. Imitation learning and actor-critic learning differ
in the definition of L , the loss function. Suppose that, in iteration t, the state vector is st , the neural
network generates output vector π(st), the agent chooses action at , a human teacher is observed to
perform action a∗t , and an affiliated Q-learning network produces estimates Q(st ,a) of the quality of all
possible actions.

1. In terms of st , π(st), at , a∗t , and/or Q(st ,a), what is L for imitation learning?

2. In terms of st , π(st), at , a∗t , and/or Q(st ,a), what is L for actor-critic learning?

3. In terms of st , π(st), at , a∗t , Q(st ,a), and/or σ ′y,i, j(w@h(s)), what is ∂L
∂wi, j

for imitation learning?

4. In terms of st , π(st), at , a∗t , Q(st ,a), and/or σ ′y,i, j(w@h(s)), what is ∂L
∂wi, j

for actor-critic learning?

Solution:

1. L =− logπa∗t (st)

2. L =−∑a πa(st)Q(st ,a)

3. ∂L
∂wi, j

=− 1
πa∗t

(st)
σ ′a∗t ,i, j(w@h(s))

4. L =−∑a Q(st ,a)σ ′a,i, j(w@h(s))
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Question 15 (7 points)
Suppose a robot arm has a shoulder angle of θ radians, an upper arm of length L1, an elbow angle of
φ radians, and a lower arm of length L2. Define a position b on the robot arm to be the point b meters
from the shoulder, thus the forward kinematics are given by:

φb

([
θ

φ

])
=

[
x
y

]
=


[

bcosθ

bsinθ

]
0≤ b≤ L1[

L1 cosθ +bcos(θ +φ)
L1 sinθ +bsin(θ +φ)

]
L1 ≤ b≤ L1 +L2

In the workspace W , there is an obstacle: a wall at y = c, which makes it impossible for any part of the
robot to exist at any point y≥ c, where you may assume that c > 0. This can be written as:

Wobs = {(x,y) : y≥ c}

Define Cobs to be the set of robot configurations [θ ,φ ] that place any part of the robot arm within Wobs.
This can be written as

Cobs = {(θ ,φ) : P} ,

where P is some inequality or disjunction of inequalities in terms of θ and φ . Find P.

Solution: There was an error in the problem statement. It should have been

φb

([
θ

φ

])
=

[
x
y

]
=


[

bcosθ

bsinθ

]
0≤ b≤ L1[

L1 cosθ +(b−L1)cos(θ +φ)
L1 sinθ +(b−L1)sin(θ +φ)

]
L1 ≤ b≤ L1 +L2

An answer is considered correct if it uses either the correct forward kinematics, or the forward
kinematics specified in the problem statement.

The robot hits the obstacle if any part of its arm is in Wobs. Literally, we can write this as:

P = (∃b ∈ [0,L1] : bsinθ ≥ c)∨ (∃b ∈ [L1,L1 +L2] : L1 sinθ +bsin(θ +φ)≥ c)

or

P = (∃b ∈ [0,L1] : bsinθ ≥ c)∨ (∃b ∈ [L1,L1 +L2] : L1 sinθ +(b−L1)sin(θ +φ)≥ c)

It is also acceptable to note that we only hit the obstacle if either the elbow or the wrist are inside
the obstacle. These two inequalities are a little bit simpler, they are just:

P = (L1 sinθ ≥ c)∨ (L1 sinθ +L2 sin(θ +φ)≥ c)

or
P = (L1 sinθ ≥ c)∨ (L1 sinθ +(L2−L1)sin(θ +φ)≥ c)
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