University of Illinois at Urbana-Champaign
 CS440/ECE448 Artificial Intelligence Conflict Exam 2
 Spring 2022

Week of April 4, 2022

Your Name:

\qquad
Your NetID: \qquad

Instructions

- Please write your NetID on the top of every page.
- This is a CLOSED BOOK exam. You will be permitted to bring one 8.5×11 page of handwritten notes (front \& back).
- Calculators are not permitted. You need not simplify explicit numerical expressions.

Possibly Useful Formulas

Search:

Admissible Heuristic: $h(n) \leq d(n)$

Consistent Heuristic: $h(m)-h(n) \leq d(m)-d(n)$ if $d(m)-d(n) \geq 0$

Belief Propagation:

$$
\begin{aligned}
P(A, B, C) & =P(A) P(B \mid A) P(C \mid A, B) \\
P(A, C) & =\sum_{b} P(A, B=b, C) \\
P(A \mid C) & =\frac{P(A, C)}{P(C)}
\end{aligned}
$$

Expectation Maximization:

$$
\begin{gathered}
P(B=b \mid A=a) \leftarrow \frac{E[\# \text { times } A=a, B=b]}{E[\# \text { times } A=a]} \\
E[\# \text { times } A=a, B=b]=\sum_{t} P\left(A_{t}=a, B_{t}=b \mid \text { observations on day } t\right)
\end{gathered}
$$

HMM:

$$
P\left(Y_{1}, X_{1}, \ldots, Y_{T}, X_{T}\right)=\prod_{t=1}^{T} P\left(Y_{t} \mid Y_{t-1}\right) P\left(X_{t} \mid Y_{t}\right)
$$

Viterbi Algorithm:

$$
\begin{aligned}
e_{i, j, t} & =a_{j, i} b_{j, k} \\
v_{i, 1} & =\pi_{i} b_{i, x_{1}} \\
v_{j, t} & =\max _{i} v_{i, t-1} e_{i, j, t}
\end{aligned}
$$

Question 1 (7 points)
Consider the following search graph. The starting state is A, the goal state is G, and the cost of each possible action is shown on the corresponding edge:

Suppose that the states shown have the following heuristics:

	A	B	C	D	E	F	G
$h(n):$	4	3	1	1	0	2	0

A* search (with repetitions avoided using an explored set) is applied to this graph to find the shortest path.

- What states are expanded, and
- what is the shortest path?

Solution: Expanded states: A,D,C,F,G Shortest path: A,D,F,G

Question 2 (7 points)
Consider the following search graph. The starting state is A, the goal state is G, and the cost of each possible action is shown on the corresponding edge:

You are considering trying to implement A* search over this graph. You are trying to decide whether to use $h_{1}(n)$ or $h_{2}(n)$ as the heuristic, where $h_{1}(n)$ and $h_{2}(n)$ are as given in the following table:

	A	B	C	D	E	F	G
$h_{1}(n):$	4	5	8	2	2	1	0
$h_{2}(n):$	4	5	8	3	2	1	0

(a) Suppose you are using an explored set to prevent repeated states, i.e., you will only expand a state if you have never expanded it before. Which of these two heuristics is better to use, and why?

Solution: Use $h_{1}[n]$, because it is consistent.
(b) Your friend convinces you to use an explored dict, i.e., you will only expand a state if you have never expanded it before with a smaller $g(n)$. Which of these two heuristics is better to use, and why?

Solution: Use $h_{2}(n)$, because it dominates $h_{1}(n)$.

Question 3 (7 points)

Consider the following crossword puzzle:

Imagine solving this puzzle as a constraint satisfaction problem. There are five variables:

- "1 across" is the five boxes horizontally, starting at the number 1 .
- "1 down" is the five boxes vertically, starting at the number 1 .
- "2 across" is the five boxes horizontally, starting at the number 2 .
- "3 across" is the five boxes horizontally, starting at the number 3 .
- "4 down" is the five boxes vertically, starting at the number 4 .

Your goal is to fill each of those five variables with exactly one of the following five "words:" "EDBDC," "AACCC," "DDAAA," "CEEEA," or "ACAAC."
(a) Suppose that none of the variables have been filled yet. Which variable should you try to fill first, and why?

Solution: 1 down should be filled first. Explanation: either say "because it constrains the largest number of other variables" or say "MCV."
(b) Suppose that you have decided to try filling the variable " 3 across" first, and you need to decide whether to try the value "EDBDC" or the value "DDAAA." Which value would be better to try, and why?

Solution: Try the value "EDBDC." Either say: "EDBDC" leaves two options for " 1 down," while "DDAAA" leaves only one option for that variable, or just say: LCV.
(c) Suppose that variable " 4 down" has been filled with the word "CEEEA." Which variable should you try next, and why?

Solution: 1 across should be filled next, because there is only one option that can go there (LRV).

Question 4 (7 points)
Consider the following Bayesian network. All variables are binary:

Suppose that the model parameters are as follows:

$$
\begin{aligned}
P(D=T) & =0.3 \\
P(R=T \mid D) & = \begin{cases}0.8 & D=F \\
0.1 & D=T\end{cases} \\
P(W=T \mid D) & = \begin{cases}0.1 & D=F \\
0.6 & D=T\end{cases}
\end{aligned}
$$

What is $P(D=T \mid W=T)$?

Solution:

$$
\begin{aligned}
P(D=T \mid W=T) & =\frac{\sum_{r=1}^{2} P(D=T, W=T)}{\sum_{d=F}^{T} P(D=d, W=T)} \\
& =\frac{(0.3)(0.6)}{(0.3)(0.6)+(0.7)(0.1)}
\end{aligned}
$$

If you wish, you can simplify the last formula to $\frac{18}{25}=0.72$, but it's not required.

Question 5 (7 points)
Consider the following Bayesian network, showing the relationship between two binary variables Y and Z:

Suppose that you've been given the following initial estimates of the model parameters, where a, b, and c are some arbitrary constants:

$$
P(Y=T)=a, \quad P(Z=T \mid Y=F)=b, \quad P(Z=T \mid Y=T)=c
$$

You are now trying to re-estimate the values of these model parameters. You have observed the values of the variables on five consecutive days, but on the fifth day, the value of Z was unobserved (labeled with a "?" in the table below:

	Day 1	Day 2	Day 3	Day 4	Day 5
Value of $Y:$	T	F	T	F	F
Value of $Z:$	F	F	F	T	$?$

For this table, in terms of the current model parameters a, b, and c, what is the expected number of days on which $Y=F$ and $Z=T$?

Solution:

$$
\begin{aligned}
E[\# \text { days } Y=F, Z=T] & =1+P(Z=T \mid Y=F) \\
& =1+b
\end{aligned}
$$

Question 6 (7 points)
Suppose that you have a hidden Markov model in which the state variables $\left(Y_{t}\right)$ and observation variables $\left(X_{t}\right)$ are binary. The initial-state probability is $P\left(Y_{1}=T\right)=0.6$, and the other model parameters are as follows:

Y_{t-1}	$P\left(Y_{t}=T \mid Y_{t-1}\right)$
F	0.2
T	0.3

Y_{t}	$P\left(X_{t}=T \mid Y_{t}\right)$
F	0.2
T	0.9

What is $P\left(Y_{1}=T \mid X_{1}=T, X_{2}=T\right)$?

Solution:

$$
\begin{aligned}
& P\left(Y_{1}=T \mid X_{1}=T, X_{2}=T\right) \\
& =\frac{P\left(Y_{1}=T, X_{1}=T, Y_{2}=T, X_{2}=T\right)+P\left(Y_{1}=T, X_{1}=T, Y_{2}=F, X_{2}=T\right)}{P\left(Y_{1}=T, X_{1}=T, Y_{2}=T, X_{2}=T\right)+P\left(Y_{1}=T, X_{1}=T, Y_{2}=F, X_{2}=T\right)+P\left(Y_{1}=F, X_{1}=T, Y_{2}=T, X_{2}=T\right)+P(Y} \\
& =\frac{(0.6)(0.9)(0.3)(0.9)+(0.6)(0.9)(0.7)(0.2)}{(0.6)(0.9)(0.3)(0.9)+(0.6)(0.9)(0.7)(0.2)+(0.4)(0.2)(0.2)(0.9)+(0.4)(0.2)(0.8)(0.2)}
\end{aligned}
$$

Question 7 (7 points)
Suppose that you have a hidden Markov model in which the state variables $\left(Y_{t}\right)$ and observation variables $\left(X_{t}\right)$ are binary. The initial-state probability is $P\left(Y_{1}=T\right)=0.6$, and the other model parameters are as follows:

Y_{t-1}	$P\left(Y_{t}=F \mid Y_{t-1}\right)$
F	0.0
T	1.0

Y_{t}	$P\left(X_{t}=T \mid Y_{t}\right)$
F	0.9
T	0.3

Suppose that the observations are $X_{1}=F, X_{2}=T$. What is the most likely sequence of values Y_{1}, Y_{2} ?

Solution: In this problem, the sequences (F, F) and (T, T) are impossible. The other two sequences have the probabilities:

$$
\begin{aligned}
& P\left(Y_{1}=T, X_{1}=F, Y_{2}=F, X_{2}=T\right)=(0.6)(0.7)(1)(0.9) \\
& P\left(Y_{1}=F, X_{1}=F, Y_{2}=T, X_{2}=T\right)=(0.4)(0.1)(1)(0.3)
\end{aligned}
$$

The sequence (T,F) has higher probability.

