University of Illinois at Urbana-Champaign
 CS440/ECE448 Artificial Intelligence Conflict Exam 1
 Spring 2022

February 24, 2022

Your Name:

\qquad
Your NetID: \qquad

Instructions

- Please write your name on the top of every page.
- This will be a CLOSED BOOK, CLOSED NOTES exam. You are permitted to bring and use only one 8.5×11 page of hand-written notes, front and back.
- No electronic devices (phones, tablets, calculators, computers etc.) are allowed.
- No calculators are permitted. You need not simplify explicit numerical expressions.

Possibly Useful Formulas

$$
\text { Probability: } P(B=1 \mid A=1)=\frac{P(A=1, B=1)}{P(A=1)}
$$

Naïve Bayes: $P(X=x \mid Y=y) \approx \prod_{i=1}^{n} P\left(W=w_{i} \mid Y=y\right)$
Laplace Smoothing: $P(w)=\frac{\operatorname{Count}(w)+k}{\sum_{w} \operatorname{Count}(w)+k\left(1+\sum_{w} 1\right)}$
Perceptron: $\vec{w}_{y}=\vec{w}_{y}+\eta \vec{x}, \vec{w}_{f(\vec{x})}=\vec{w}_{f(\vec{x})}-\eta \vec{x}$
Linear Regression w/SGD: $\vec{w} \leftarrow \vec{w}-\frac{\eta}{2} \nabla_{\vec{w}} \varepsilon_{i}^{2}=\vec{w}-\eta \varepsilon_{i} \vec{x}_{i}$
Logistic Regression: $\nabla_{\vec{w}_{c}} \mathscr{L}_{i}=\nabla_{\vec{w}_{c}}\left(-\ln \frac{e^{\vec{w}_{c}^{T} \vec{x}_{i}}}{\sum_{k} e^{\vec{w}_{k} T_{\vec{x}}}}\right)=\left(\frac{e^{\vec{w}_{c}^{T} \vec{x}_{i}}}{\sum_{k} e^{\vec{e}_{k}^{T} \vec{x}_{i}}}-y_{i, c}\right) \vec{x}_{i}$
Neural Net: $\xi_{j}^{(l)}=b_{j}^{(l)}+\sum_{k} w_{j, k}^{(l)} h_{k}^{(l-1)}, \quad h_{j}^{(l)}=g^{(l)}\left(\xi_{j}^{(l)}\right)$
Back-Propagation: $\frac{\partial \mathscr{L}}{\partial h_{k}^{(l-1)}}=\sum_{j} \frac{\partial \mathscr{L}}{\partial h_{j}^{(l)}} \frac{\partial h_{j}^{(l)}}{\partial h_{k}^{(l-1)}}$
Pinhole Camera: $\frac{x^{\prime}}{f}=-\frac{x}{z}, \quad \frac{y^{\prime}}{f}=-\frac{y}{z}$

Question 1 (7 points)
Consider two binary random variables, X and Y. Suppose that

$$
\begin{array}{r}
P(Y=0)=b \\
P(X=1, Y=0)=c
\end{array}
$$

In terms of b and/or c, what is the largest possible value of $P(X=1) ?$

Question 2 (7 points)
Suppose you are training a naïve Bayes model. There are two classes, $Y=0$ and $Y=1$, with the following observations:

- Training text for class $Y=0$: "apple apple apple apple apple apple".
- Training text for class $Y=1$: "banana banana banana banana banana apple".

Use this example to discuss, in a few sentences, the importance of Laplace smoothing.

Question 3 (7 points)
Describe, in one sentence each, (1) what does it mean for a classifier to overfit a training corpus?, (2) what does it mean for a model to underfit a training corpus?, (3) how can overfitting and underfitting be avoided?

Question 4 (7 points)
Imagine training a perceptron with a training dataset that contains only two training tokens: $\vec{x}_{1}=$ $[1,1]^{T}, y_{1}=1$ and $\vec{x}_{2}=[-1,-1]^{T}, y_{2}=-1$. Suppose you begin with the weight vector $\vec{w}=[0,0]^{T}$ and bias $b=-1$, then present the data in alternating order $\left\{\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right),\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots\right\}$, with a learning rate of $\eta=1$, until \vec{w} and b converge. What are the final converged values of \vec{w} and b ?

Question 5 (7 points)
In stochastic gradient descent, we train using one training token at a time. Suppose x is a scalar input, and suppose we have

$$
\mathscr{L}=-\ln f_{2}(x)
$$

where

$$
f_{k}(\vec{x})=\frac{e^{w_{k} x+b_{k}}}{e^{w_{1} x+b_{1}}+e^{w_{2} x+b_{2}}} \text { for } k \in\{1,2\}
$$

In terms of $x, w_{1}, w_{2}, b_{1}, b_{2}, f_{1}(x)$ and/or $f_{2}(x)$, what is $\frac{d \mathscr{L}}{d b_{1}}$?

Question 6 (7 points)
Consider a two-layer neural network with a scalar input, x. Assume that all of the weights and biases are nonzero, and that the output $f(x)$ is computed as:

$$
\begin{aligned}
f(x) & =w_{1,1}^{(2)} h_{1}+w_{1,2}^{(2)} h_{2}+b^{(2)} \\
h_{1} & =\operatorname{ReLU}\left(w_{1,1}^{(1)} x+b_{1}^{(1)}\right) \\
h_{2} & =\operatorname{ReLU}\left(w_{2,1}^{(1)} x+b_{2}^{(1)}\right)
\end{aligned}
$$

For what values of x is $\frac{\partial f}{\partial w_{1,1}^{(1)}} \neq 0$? Express your answer in terms of $h_{j}, w_{j, k}^{(l)}$, and/or $b_{k}^{(l)}$ for any values of j, k, and/or l that may be useful to you.

Question 7 (7 points)
You are standing on a downward-sloping hillside, with your camera pointed straight ahead of you. Parallel to your line of sight, on your left-hand side (at position $x=-2$ meters), there is a low fence (height 1 meter). The fence descends the hill in front of you, vanishing into a point far in the distance. Let $\left(x^{\prime}, y^{\prime}\right)$ denote the position of the fence's vanishing point on your photograph, where x^{\prime} is horizontal position, y^{\prime} is vertical position, and $(0,0)$ is the point directly corresponding to your line of sight.

- Is $x^{\prime}<0, x^{\prime}=0$, or $x^{\prime}>0$? Explain.
- Is $y^{\prime}<0, y^{\prime}=0$, or $y^{\prime}>0$? Explain.

