
Natural Language Processing
with Neural Nets
CC-BY 4.0: copy at will, but cite the source

Mark Hasegawa-Johnson
5/2022

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

Semantics: Montague grammar

Richard Montague defined formal semantics as follows:
• ”Understanding a sentence” means that you can specify the

conditions under which the sentence would be true
• The meaning of a sentence is composed of the meanings of its words.

For example:

Richard Montague, 1930-1971
photograph © Richard Thomason

Logical form Example Meaning
some(P,Q) “some people sing” ∃𝑥: (𝑃𝑥 ∧ 𝑄𝑥)
a(P,Q) “a bird sings” ∃𝑥: (𝑃𝑥 ∧ 𝑄𝑥)
every(P,Q) “every bird sings” ∀𝑥: (𝑃𝑥 → 𝑄𝑥)
no(P,Q) “no bird snores” ∀𝑥: (𝑃𝑥 → ¬ 𝑄𝑥)

Syntax

Syntax is the study of how words
combine.
• Syntax is a descriptive science: it

simply describes how words
combine when people are using
them naturally.
• Compositional semantics studies

the meanings of those
combinations.

ParseTree.svg. Public domain image, Stannered, 2007

Grammar
A grammar is a mathematical specification of the
set of all word sequences that form valid
sentences in a language (e.g., English).
• Recursively enumerable: any grammar that

can be decided by a Turing machine
• Context-sensitive: phrase A is expanded into

phrases B and C using rules of the form 𝛼𝐴𝛽 →
𝛼𝐵𝐶𝛽 for specified contexts 𝛼 and 𝛽.
• Context-free: phrase A is expanded into

phrases B and C using context-free rules: 𝐴 →
𝐵𝐶.
• Regular: phrase A can only be expanded into a

word followed by another phrase: 𝐴 → 𝑎𝐵.

Chomsky-hierarchy.svg. CC-SA 3.0, J. Finkelstein, 2010

Grammar

Humans usually think of natural
language using context-free
grammar (CFG). For example,

𝑆 → 𝑁𝑃 𝑉𝑃
𝑉𝑃 → 𝑉 𝑁𝑃
𝑁𝑃 → 𝐷𝑒𝑡 𝑁
𝑁𝑃 → John
𝑉 → hit
𝐷𝑒𝑡 → the
𝑁 → ball

ParseTree.svg. Public domain image, Stannered, 2007

Grammar

A CFG with finite recursion depth
can be written as a regular
grammar. For example:

𝑆 → John 𝑉𝑃
𝑉𝑃 → hit 𝑁𝑃
𝑁𝑃 → the 𝑁
𝑁 → ball

ParseTree.svg. Public domain image, Stannered, 2007

Grammar

A regular grammar can be written
using an HMM.
• The phrase is the state variable
• The word is the observed variable

𝑆 → John 𝑉𝑃
𝑉𝑃 → hit 𝑁𝑃
𝑁𝑃 → the 𝑁
𝑁 → ball

S VP NP N

John hit the ball

Key concepts: syntax and semantics

• Compositional semantics studies how sentence meaning is computed
from word meanings.
• Syntax studies the ways in which words combine.
• A grammar is a mathematical specification of the sequences of words

that form valid sentences in a language.
• A context-free grammar with finite recursion depth can be written as

a regular grammar.
• A regular grammar can be written as an HMM.

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

Parts of speech
Many grammars are written in
terms of parts of speech, to make
them a bit more general. For
example, this one…

ParseTree.svg. Public domain image, Stannered, 2007

S VP NP NP

N Det N

…could be generalized like this…

V

Parts of speech

For some reason, most of the part-of-
speech (POS) systems proposed by
philosophers have 2! parts of
speech, for some value of N.
• Plato (350BC) proposed that there

are 2 parts of speech: nouns and
verbs.

POS

Nouns Verbs

Parts of speech

For some reason, most of the part-of-
speech (POS) systems proposed by
philosophers have 2! parts of
speech, for some value of N.
• Plato (350BC) proposed that there

are 2 parts of speech: nouns and
verbs.
• Yāska (600BC) proposed that there

are 4 parts of speech.

POS

Inflectable Uninflectable

Nouns Verbs Pre-
verbs Particles

Parts of speech

For some reason, most of the part-of-
speech (POS) systems proposed by
philosophers have 2! parts of
speech, for some value of N.
• Plato (350BC) proposed that there

are 2 parts of speech: nouns and
verbs.
• Yāska (600BC) proposed that there

are 4 parts of speech.
• Dionysus Thrax (100BC) proposed 8

parts of speech.

POS

Inflectable Uninflectable

Nouns
Verbs

Participles
Articles

Pronouns
Prepositions

Adverbs
Conjunctions

Parts of speech

Most modern English dictionaries use these POS tags.
• Open-class words (anybody can make up a new word, in any of these

classes, at any time): nouns, verbs, adjectives, adverbs, interjections
• Closed-class words (it’s hard to make up a new word in these

classes): pronouns, prepositions, conjunctions, determiners

Most published, tagged data use POS tags that are finer-grained than
the nine tags listed above. For example, the next few slides describe
the Penn Treebank POS tag set.

Nouns

The Penn Treebank noun categories are:
• NN (singular or mass common noun): llama, thought, communism
• NNS (plural common noun): llamas, thoughts
• NNP (singular proper noun): Jane, IBM, Mexico
• NNPS (plural proper noun): Osbournes, Carolinas
• VBG (gerund): eating

Verbs

The Penn Treebank verb categories are:
• VB (verb base form): eat
• VBD (verb past tense): ate
• VBP (verb non-3sg present): eat
• VBZ (verb 3sg present): eats
• MD (modal): can as in “can lift”, should as in “should go”
• RP (particle): up as in “get up,” off as in “take off”

Adjectives

The Penn Treebank has several categories that might be considered types of
adjectives:
• CD (cardinal number --- use this tag regardless of whether the number is

being used as a noun or adjective): one, two, twenty
• JJ (adjective): yellow, exceptional, tall
• JJR (comparative adjective): yellower, taller
• JJS (superlative adjective): yellowest, tallest
• PRP$ (possessive pronoun): your, one’s
• VBN (verb past participle): eaten, compiled
• WP$ (wh-possessive): whose

Determiners, Prepositions and Conjunctions

The Penn Treebank has a lot of things that look like determiners,
prepositions, or conjunctions:
• CC (coordinating conjunction): and, but, or
• DT (determiner): a, the
• IN (preposition or subordinating conjunction): of, in, by
• PDT (predeterminer): all, both
• POS (possessive ending): ‘s, as in “Bob’s dog”
• TO (any use of the word “to”): to
• WDT (wh-determiner): which, that

Why do POS tagging?

• Because it’s highly accurate, typically 97%. That means you can run a
POS tagger as a pre-processing step, before doing harder natural
language understanding tasks.
• Because it’s necessary, if you want to know what the words in the

sentence mean.

Will Will ? Will will . Will will will Will ’s will to Will .
MD NNP SYM NNP MD SYM NNP MD VB NNP POS NN TO NNP SYM

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

An HMM for POS tagging
The basic idea of an HMM POS tagger is:
• Treat the part of speech as the hidden state variable
• Treat the word as observed

ParseTree.svg. Public domain image, Stannered, 2007

N V DT N

John the ballhit

HMM as a Bayes Net

This slide shows an HMM as a
Bayes Net. You should remember
the graph semantics of a Bayes net:
• Nodes are random variables.
• Edges denote stochastic

dependence.

𝑌()* 𝑌(𝑌(+*

𝑋!"# 𝑋!$#𝑋!

……

HMM as a Finite State Machine

This slide shows exactly the same
HMM, viewed in a totally different
way. Here, we show it as a finite
state machine:
• Nodes denote states.
• Edges denote possible transitions

between the states.

N V𝑃(𝑌! = 𝑁|𝑌!"# = 𝑁)

D

𝑃(𝑌! = 𝐷|𝑌!"# = 𝐷)

𝑃(𝑌! = 𝑉|𝑌!"# = 𝑉)𝑃(𝑌! = 𝑉|𝑌!"# = 𝑁)

𝑃(𝑌! = 𝐷|𝑌!"# = 𝑉)𝑃(𝑌! = 𝑁|𝑌!"# = 𝑁)

Parameters of an HMM

Suppose that there are N distinct POS tags, and V
distinct words. Then the parameters of an HMM
are:
• 𝜋" = 𝑃(𝑌# = 𝑗). There are 𝑁 of these.
• 𝑎$" = 𝑃(𝑌% = 𝑗|𝑌%&# = 𝑖). There are 𝑁' of these.
• 𝑏"(= 𝑃 𝑋% = 𝑘|𝑌% = 𝑗 . There are 𝑁𝑉 of these.

N V

D
𝑎$%

𝑎%%

𝑎%&

𝑎&&

𝑎&$ 𝑎$$

Estimating the Parameters of an HMM

𝜋! =
#sentences that start with POS 𝑗 + 𝑘
#sentences in the training corpus + 𝑘𝑁

𝑎"! =
#times 𝑗 follows 𝑖 + 𝑘

#times tag 𝑖 occurs in training corpus + 𝑘𝑁

𝑏!# =
#times tag 𝑗 is matched to word 𝑘 + 𝑘

#times tag 𝑗 occurs in training corpus + 𝑘(𝑉 + 1)

N V

D
𝑎$%

𝑎%%

𝑎%&

𝑎&&

𝑎&$ 𝑎$$

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

Viterbi Algorithm: Key concepts
Nodes and edges have numbers attached to them:
• Edge Probability: Probability of taking that transition, and then generating the

next observed output

𝑎$,"𝑏",(= 𝑃 𝑌% = 𝑗, 𝑋% = 𝑘|𝑌%&# = 𝑖

• Node Probability: Probability of the best path until node j at time t

𝑣",% = max
$,…,%&$

𝑃 𝑋# = 𝑥#… ,𝑋% = 𝑥%, 𝑌# = 𝑦#, … , 𝑌% = 𝑗

Viterbi Algorithm for POS tagging
Initial Node Probability: Probability of starting in a
particular node:

𝑣",# = 𝑃 𝑋# = 𝑥#, 𝑌# = 𝑗
= 𝑃 𝑌# = 𝑗 𝑃 𝑋% = 𝑥#|𝑌% = 𝑗

= 𝜋"𝑏",,$
N V

D
𝑎$%

𝑎%%

𝑎%&

𝑎&&

𝑎&$ 𝑎$$

Trellis

Initial Node Probability:
𝑣",# = 𝜋"𝑏",,$

Edge Probability:
𝑎$,"𝑏",,%

𝜋!𝑏!,#$%&

𝜋'𝑏',#$%&

𝑋' = John 𝑋(= hit 𝑋) = the 𝑋* = ball

𝜋(𝑏(,#$%&

𝑎 -
!
𝑏 !
,.
/0

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎 -
!
𝑏 !
,0.
1

𝑎 -
!
𝑏 !
,23
44

𝑎 5
-
𝑏 -
,23
44

𝑎 5
-
𝑏 -
,0.
1

𝑎 5
-
𝑏 -
,.
/0

𝑎!!𝑏!,./0 𝑎!!𝑏!,0.1 𝑎!!𝑏!,2344

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Trellis

Initial Node Probability:
𝑣",# = 𝜋"𝑏",,$

Edge Probability:
𝑎$,"𝑏",,%

Node Probability:
𝑣",% = max

$
𝑣$,%&#𝑎$,"𝑏",,%

𝑣,,*

𝑣.,*

𝑋' = John 𝑋(= hit 𝑋) = the 𝑋* = ball

𝑣/,*

𝑎 -
!
𝑏 !
,.
/0

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎 -
!
𝑏 !
,0.
1

𝑎 -
!
𝑏 !
,23
44

𝑎 5
-
𝑏 -
,23
44

𝑎 5
-
𝑏 -
,0.
1

𝑎 5
-
𝑏 -
,.
/0

𝑎!!𝑏!,./0 𝑎!!𝑏!,0.1 𝑎!!𝑏!,2344

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Trellis

Node Probability:
𝑣",% = max

$
𝑣$,%&#𝑎$,"𝑏",,%

𝑣,,*

𝑣.,*

𝑋' = John 𝑋(= hit 𝑋) = the 𝑋* = ball

𝑣/,*

𝑎 -
!
𝑏 !
,.
/0

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎 -
!
𝑏 !
,0.
1

𝑎 -
!
𝑏 !
,23
44

𝑎 5
-
𝑏 -
,23
44

𝑎 5
-
𝑏 -
,0.
1

𝑎 5
-
𝑏 -
,.
/0

𝑎!!𝑏!,./0 𝑎!!𝑏!,0.1 𝑎!!𝑏!,2344

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Trellis
Node Probability:
𝑣",% = max

$
𝑣$,%&#𝑎$,"𝑏",,%

For example, suppose
max
$

𝑣$,#𝑎$,!𝑏!,./0 =
𝑣-,#𝑎-,!𝑏!,./0

𝑣,,*

𝑣.,*

𝑋' = John 𝑋(= hit 𝑋) = the 𝑋* = ball

𝑣/,*

𝑎 -
!
𝑏 !
,.
/0

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎 -
!
𝑏 !
,0.
1

𝑎 -
!
𝑏 !
,23
44

𝑎 5
-
𝑏 -
,23
44

𝑎 5
-
𝑏 -
,0.
1

𝑎 5
-
𝑏 -
,.
/0

𝑎!!𝑏!,./0 𝑎!!𝑏!,0.1 𝑎!!𝑏!,2344

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Trellis
Node Probability:
𝑣",% = max

$
𝑣$,%&#𝑎$,"𝑏",,%

For example, suppose
max
$

𝑣$,#𝑎$,!𝑏!,./0 =
𝑣-,#𝑎-,!𝑏!,./0

Therefore
𝑣!,' = 𝑣-,#𝑎-,!𝑏!,./0

𝑣,,*

𝑣.,*

𝑋' = John 𝑋(= hit 𝑋) = the 𝑋* = ball

𝑣/,* 𝑣/,0

𝑎 -
!
𝑏 !
,.
/0

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎 -
!
𝑏 !
,0.
1

𝑎 -
!
𝑏 !
,23
44

𝑎 5
-
𝑏 -
,23
44

𝑎 5
-
𝑏 -
,0.
1

𝑎 5
-
𝑏 -
,.
/0

𝑎!!𝑏!,./0 𝑎!!𝑏!,0.1 𝑎!!𝑏!,2344

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Trellis
Node Probability:
Similarly, we calculate
𝑣",' = max

$
𝑣$,#𝑎$,"𝑏",./0

…for all of the other nodes at
time 2. 𝑣,,*

𝑣.,* 𝑣.,0

𝑣,,0

𝑋' = John 𝑋(= hit 𝑋) = the 𝑋* = ball

𝑣/,* 𝑣/,0

𝑎 -
!
𝑏 !
,.
/0

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎 -
!
𝑏 !
,0.
1

𝑎 -
!
𝑏 !
,23
44

𝑎 5
-
𝑏 -
,23
44

𝑎 5
-
𝑏 -
,0.
1

𝑎 5
-
𝑏 -
,.
/0

𝑎!!𝑏!,./0 𝑎!!𝑏!,0.1 𝑎!!𝑏!,2344

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Trellis

𝑣,,*

𝑣.,* 𝑣.,0

𝑣,,0

𝑋' = John

𝑣.,1

𝑣,,1

𝑋(= hit 𝑋) = the

𝑣.,2

𝑣,,2

𝑋* = ball

𝑣/,* 𝑣/,0 𝑣/,1 𝑣/,2

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Node Probability:
Similarly, we calculate
𝑣",' = max

$
𝑣$,#𝑎$,"𝑏",./0

…for all of the other nodes at
time 2.

…and then calculate
𝑣",% = max

$
𝑣$,%&#𝑎$,"𝑏",,%

…for every other time step.

Trellis

𝑣,,*

𝑣.,* 𝑣.,0

𝑣,,0

𝑋' = John

𝑣.,1

𝑣,,1

𝑋(= hit 𝑋) = the

𝑣.,2

𝑣,,2

𝑋* = ball

𝑣/,* 𝑣/,0 𝑣/,1 𝑣/,2

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Node Probability:
𝑣",% = max

$
𝑣$,%&#𝑎$,"𝑏",,%

Backpointer:
𝑖",%∗ = argmax

$
𝑣$,%&#𝑎$"𝑏",,%

Shown: possible
backpointers. Actual
backpointers depend on
model parameters!

Backtrace

𝑣,,*

𝑣.,* 𝑣.,0

𝑣,,0

𝑋' = John

𝑣.,1

𝑣,,1

𝑋(= hit 𝑋) = the

𝑣.,2

𝑣,,2

𝑋* = ball

𝑣/,* 𝑣/,0 𝑣/,1 𝑣/,2

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Find the node with the
highest value of 𝑣",7 at the
end, and follow the
backpointers!

Shown: possible backtrace.
Actual backtrace depends on
model parameters!

Viterbi algorithm key formulas

Initial Node Probability:
𝑣",# = 𝜋"𝑏",,$

Edge Probability:
𝑎$"𝑏",,%

Node Probability:
𝑣",% = max

$
𝑣$,%&#𝑎$"𝑏",,%

Backpointer:
𝑖",%∗ = argmax

$
𝑣$,%&#𝑎$"𝑏",,%

Viterbi algorithm key formulas

Initial Node Probability:
log 𝑣",# = log𝜋" + log 𝑏",,$

Edge Probability:
log 𝑎$" + log 𝑏",,%

Node Probability:
ln 𝑣",% = max

$
ln 𝑣$,%&# + ln𝑎$" + ln𝑏",,%

Backpointer:
𝑖",%∗ = argmax

$
ln 𝑣$,%&# + ln𝑎$" + ln𝑏",,%

Example from Jurafsky & Martin

© Daniel Jurafsky & James H. Martin, 2021

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

From HMM to Neural Net

𝑣,,*

𝑣.,* 𝑣.,0

𝑣,,0

𝑋' = John

𝑣.,1

𝑣,,1

𝑋(= hit 𝑋) = the

𝑣.,2

𝑣,,2

𝑋* = ball

𝑣/,* 𝑣/,0 𝑣/,1 𝑣/,2

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Viterbi algorithm:

𝑣",% = max
$

𝑣$,%&#𝑎$,"𝑏",,%

From HMM to Neural Net

𝑣,,*

𝑣.,* 𝑣.,0

𝑣,,0

𝑋' = John

𝑣.,1

𝑣,,1

𝑋(= hit 𝑋) = the

𝑣.,2

𝑣,,2

𝑋* = ball

𝑣/,* 𝑣/,0 𝑣/,1 𝑣/,2

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0

Viterbi algorithm:

𝑣+,- = max
.

𝑣.,-/0𝑎.,+𝑏+,1!

Suppose we want 𝑣+,- to add
over all previous paths, instead
of being the maximum. We get
this using the belief propagation
equation:

𝑣+,- =9
.

𝑣.,-/0𝑎.,+𝑏+,1!

From HMM to Neural Net

Here’s a weird way to write the belief propagation equation (𝑣+,- = ∑. 𝑣.,-/0𝑎.,+𝑏+,1!):
𝑣+,- = 𝑒23 4",$!523 ∑% 7%,!&'8%,"

Suppose that we define an input one-hot vector, 𝑧-, such that

𝑧9,- = >1 𝑘 = 𝑥-
0 otherwise

…and suppose we define a matrix B as:

𝐵 =
𝑏0,0 ⋯ 𝑏0,|:|
⋮ ⋱ ⋮

𝑏;,0 ⋯ 𝑏;,|:|
…then 𝑏+,1! is the 𝑗<= element of the vector 𝐵𝑧-.

From HMM to Neural Net

𝑣",% = 𝑒48 9,,.%:48 ∑/ </,%&$=/,,

Similarly, define the vector 𝑣⃗% and the matrix A to be:

𝑣⃗% =
𝑣#,%
⋮
𝑣!,%

, 𝐴 =
𝑎#,# ⋯ 𝑎#,!
⋮ ⋱ ⋮

𝑎!,# ⋯ 𝑎!,!
…then ∑$ 𝑣$,%&#𝑎$," is the 𝑗0. element of the vector 𝐴7𝑣⃗%&#.

From HMM to Neural Net
With those definitions, the belief propagation equation can be
implemented using the following neural network:

𝑣",% = 𝑒48 9,,.%:48 ∑/ </,%&$=/,,

𝑣',01'

𝑣2,01'

⋮

𝑧',0

𝑧|4|,0

⋮

ln

ln

⋮

ln

ln

⋮

exp

exp

⋮
𝑣',+

𝑣2,+

𝑎','
𝑎',2

𝑎2,'
𝑎2,2

𝑏','
𝑏2,'

𝑏',|4|
𝑏2,|4|

From HMM to Neural Net
Using scalar nonlinearities applied after matrix transforms, we can
write it as:

𝑣⃗% = 𝑒48 >@⃗%:48 A5<%&$

𝑣⃗+1'

𝑧+

ln

ln

𝑣⃗+1'
𝐴6

𝐵
The “exp” is implied here.

From HMM to Neural Net: Implementation Hack
If we want to implement belief propagation exactly, then we need to
use these nonlinearities:

𝑣⃗% = 𝑒48 >@⃗%:48 A5<%&$

In a neural network, though, the parameters will be learned from data,
in order to minimize some loss function. The exact form of the
nonlinearity is therefore not too important, so we usually choose some
nonlinearity that’s easily available in pytorch. For example, a common
one in recurrent neural networks is:

𝑣⃗% = tanh 𝐵𝑧% +𝐴7𝑣⃗%&# =
1− 𝑒&' >@⃗%:A5<%&$

1 + 𝑒&' >@⃗%:A5<%&$

From HMM to Neural Net: Implementation Hack
Using the implementation hack, the network simplifies to:

𝑣⃗% = tanh 𝐵𝑧% +𝐴7𝑣⃗%&#

The “tanh” is implied here.

𝑣⃗()* 𝑣⃗(𝑣⃗(+*

𝑧()* 𝑧(𝑧(+*

… …

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

Recurrent neural
network (RNN)

A recurrent neural network (RNN) is a network in which the hidden nodes at time t
depend on the input at time t, and on the hidden nodes at time t-1:

ℎ+ = 𝑔 𝐴6ℎ+1' + 𝐵𝑥⃗+

...where A and B are weight matrices, and g() is some kind of scalar nonlinearity.

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

Recurrent neural
network (RNN)

For example, suppose that we have the sentence

“John hit the ball”

... and we want to find each word’s part of speech.

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

Recurrent neural
network (RNN)

Let’s define

𝑥⃗+ =

1 if 𝑋+ = ball
1 if 𝑋+ = hit
1 if 𝑋+ = John
1 if 𝑋+ = the

…so the observation sequence is…

𝑥⃗' =
0
0
1
0

, 𝑥⃗(=
0
1
0
0

, 𝑥⃗) =
0
0
0
1

, 𝑥⃗* =
1
0
0
0

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

Recurrent neural
network (RNN)

Let’s define

ℎ(= 𝑔 𝐴)ℎ(*+ +𝐵𝑥⃗(≈
𝑃 𝑌(= Det|𝑋+, … , 𝑋(
𝑃 𝑌(= Noun|𝑋+, … , 𝑋(
𝑃 𝑌(= Verb|𝑋+, … , 𝑋(

If we define ℎ, = 0,0,0), and with a reasonable set of weight matrices and a softmax
nonlinearity (instead of tanh), one simulation result gave this result:

ℎ+ =
0.28
0.44
0.28

, ℎ- =
0.20
0.20
0.60

, ℎ. =
0.63
0.18
0.18

, ℎ/ =
0.24
0.53
0.24

Thus “John hit the ball” has the following most-likely POS: “Noun Verb Det Noun.”

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

Training an RNN

In order to match the convention used in Wikipedia, let’s rename the weight matrices as
ℎ) = 𝑔 𝑈ℎ)*+ +𝑊𝑥⃗)

An RNN is trained using gradient descent, just like any other neural network!

𝑢,,- ← 𝑢,,- − 𝜂
𝜕𝔏
𝜕𝑢,,-

𝑤,,. ← 𝑤,,. − 𝜂
𝜕𝔏
𝜕𝑤,,.

…where 𝔏 is the loss function, and 𝜂 is a step size.

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

Training an RNN: How can we solve this?
The big difference is that now the
loss function depends on U and W in
many different ways:
• The loss function depends on each

of the state vectors ℎ+
• Each of the state vectors depends

on 𝑈 and 𝑊
• Each of the state vectors ALSO

depends on the previous state
vector, ℎ+1' …

• … which ALSO depends on 𝑈 and
𝑊, and on ℎ+1(…

• AUGH!

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

𝔏

Back-propagation through time
The solution is something called
back-propagation through time:

𝑑𝔏
𝑑ℎ",+

=
𝜕𝔏
𝜕ℎ",+

+
𝑑𝔏

𝑑ℎ!,+7'

𝜕ℎ!,+7'
𝜕ℎ",+

• The first term measures losses
caused directly by ℎ",+, for
example, if ℎ",+ is wrong.

• The second term measures losses
caused indirectly, for example,
because ℎ",+ caused ℎ!,+7' to be
wrong.

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

𝔏

Back-propagation through time
Once we’ve back-propagated
through time, then we add up all the
different ways in which the weight
matrix affects the output:

𝑑𝔏
𝑑𝑢!,"

=_
+8'

6
𝑑𝔏
𝑑ℎ",+

𝜕ℎ",+
𝜕𝑢!,"

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

𝔏

Back-propagation through time
Notice that this is just like training a
very deep network!
• Back-propagation through time:

back-propagate from time step 𝑡 +
1 to time step 𝑡

• Back-propagation in a very deep
network: back-propagate from
layer 𝑙 + 1 to layer 𝑙

Toolkits like PyTorch use the same
code in both cases.

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

𝔏

Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm for POS tagging
• From HMM to Neural Net
• Recurrent neural networks
• Training a recurrent neural network
• Long short-term memory (LSTM)

Exponential
forgetting

Regular RNNs have a problem: they forget
what they know!

For example, suppose that the feedback

matrix is U = '
(

, so that ℎ+ =
'
(
ℎ+1'.

Then the state vector decays as '
(

+
!

ℎ()* ℎ(ℎ(+*

𝑥⃗()* 𝑥⃗(𝑥⃗(+*

… …

Exponential-decay.png. CC-SA-4.0, Svjo, 2017

Long-Short Term Memory (LSTM)
A Long-Short Term Memory network (LSTM) solves
the exponential forgetting problem using something
called a gate.

Remember that a normal RNN computes

ℎ+ = 𝑔 𝑈ℎ+1' +𝑊𝑥⃗+

…so if U = '
(

, and if 𝑔(c) is linear, then ℎ+ =
'
(

+
.

CC-SA-4.0,
MingxianLin,

2018

Long-Short Term Memory (LSTM)
An LSTM computes

𝑐+ = 𝑓+𝑐+1' + 𝑖+𝑥⃗+

This is just like a regular RNN, except that now, 𝑓+
and 𝑖+ are not constant. They are adjusted,
depending on what the LSTM sees in the input.

CC-SA-4.0,
MingxianLin,

2018

Long-Short Term Memory (LSTM)
An LSTM computes

𝑐(= 𝑓(𝑐(*+ + 𝑖(𝑥⃗(
𝑓(and 𝑖(are called the “forget gate” and the “input
gate,” respectively. They are computed as

𝑓(= 𝜎 𝑈0ℎ(*+ +𝑊0𝑥⃗(
𝑖(= 𝜎 𝑈1ℎ(*+ +𝑊1𝑥⃗(

…where 𝜎 I is the logistic sigmoid function. Remember
that 0 < 𝜎 I < 1. So:

• If the LSTM wants to remember what it knows, then it
will choose 𝑓(≈ 1.

• If the LSTM wants to forget what it knows, then it will
choose 𝑓(≈ 0.

CC-SA-4.0,
MingxianLin,

2018

Long-Short Term Memory (LSTM)

𝑓+ = 𝜎 𝑈9ℎ+1' +𝑊9𝑥⃗+
𝑖+ = 𝜎 𝑈"ℎ+1' +𝑊"𝑥⃗+

In order to decide whether to remember what it

knows, the LSTM compares 𝑈9ℎ+1' to 𝑊9𝑥⃗+.

Before it does that, it decides whether it needs to

make such a comparison: ℎ+1' is equal to the
previous time step’s memory cell, multiplied by an
“output gate” 𝑜+1':

ℎ+ = 𝑜+𝑐+
𝑜+ = 𝜎 𝑈:ℎ+1' +𝑊:𝑥⃗+

CC-SA-4.0,
MingxianLin,

2018

Long-Short Term Memory (LSTM)
An LSTM replaces the one equation of a normal
RNN:

ℎ+ = 𝑔 𝑈ℎ+1' +𝑊𝑥⃗+

…with these five equations:

• Forget Gate: 𝑓+ = 𝜎 𝑈9ℎ+1' +𝑊9𝑥⃗+

• Input Gate: 𝑖+ = 𝜎 𝑈"ℎ+1' +𝑊"𝑥⃗+

• Output Gate: 𝑜+ = 𝜎 𝑈:ℎ+1' +𝑊:𝑥⃗+

• Cell: 𝑐+ = 𝑓+𝑐+1' + 𝑖+𝑥⃗+

• Output: ℎ+ = 𝑜+𝑐+

CC-SA-4.0,
MingxianLin,

2018

LSTM: Remember when you want to
remember, forget when you want to forget

Remember that an
RNN tends to forget

exponentially, like
this:

Exponential-
decay.png.
CC-SA-4.0,
Svjo, 2017

An LSTM forgets
more like this:

𝑓) ≈ 1 during these time steps 𝑓) ≈ 0 during these time steps
𝑡

𝑐!

ℎ!

Outline

• Syntax and semantics
• A grammar specifies which word sequences are valid sentences
• Finite-depth CFG = Regular grammar = HMM

• Part of speech tagging
• Open-class words: nouns, verbs, adverbs, adjectives, interjections
• Closed-class words: prepositions, pronouns, conjunctions, determiners

• An HMM for POS tagging
• State variable is the part of speech
• Observation is the word

• The Viterbi algorithm
• ln 𝑣2,(= max

1
ln 𝑣1,(*+ + ln𝑎12 + ln𝑏2,3'

Content

• Recurrent neural networks
ℎ% = 𝑔 𝑈ℎ%&#,𝑊𝑥⃗%

• Training a recurrent neural network: Back-propagation through time
(BPTT)

𝑑𝔏
𝑑ℎ$,%

=
𝜕𝔏
𝜕ℎ$,%

+
𝑑𝔏

𝑑ℎ",%:#
𝜕ℎ",%:#
𝜕ℎ$,%

• Avoid catastrophic forgetting: use Long short-term memory (LSTM)
𝑐% = 𝑓%𝑐%&# + 𝑖%𝑥⃗%

