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Mechanics: How to take the exam

• No calculators, computers, or textbooks
• You may bring one 8.5x11 page of notes, handwritten, front & back

If you’re taking the exam in person:
• Show up to class on Monday, ready to take an exam.



Mechanics: How to take the exam

If you are taking it online:
• You will receive a zoom URL by e-mail by Sunday night.  If you do not 

receive it by Sunday night, please let us know.
• Log on to that zoom URL before 1:00pm on Monday.
• Turn on your webcam.  Your webcam needs to show your hands, face, and 

workspace.
• At 1:00pm, if everybody has their webcam on, the TA will post the exam 

PDF in the zoom chat window. 
• You can write your answers electronically or on paper.
• At exactly 1:50pm, the TA will tell you to stop working, and to start 

photographing your answers, and uploading them to Gradescope. 



How to study: Recommended approach

1. Review the quiz problems and MPs: for each quiz, there is now a 0-
point “practice quiz” that you can re-take as often as you like.

2. Review the lecture slides – try to extract a few key bullet points or 
equations from each lecture.

3. Do the sample exam problems.  Do them yourself, then compare 
your answer with your friend’s answer, then check the solutions.

4. Write your cheat sheet (8.5x11, both sides if you wish).
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Topics on the exam

Broadly, there are just two topics:
• Probability
• Machine learning



Topics on the exam

Narrowing down a little bit:
• Probability (lecture 2: definition)

• Lecture 2: conditional probability, axioms of probability, independence
• Lecture 3: Bayesian classifier, naïve Bayes
• Lecture 4: recall & precision, train, dev, & test corpora, Laplace smoothing

• Machine learning (lecture 5: definition)
• Lecture 6: perceptron
• Lecture 7: linear regression
• Lecture 8: logistic regression
• Lectures 9-11: multilayer networks, back-propagation
• Lecture 12: computer vision (pinhole camera equations, convolution)



The axioms of probability

Axiom 1: every event has a non-negative probability.
𝑃 𝐴 = 𝑇 ≥ 0

Axiom 2: If an event always occurs, we say it has probability 1.

Ω = (𝑇 always
𝐹 never

𝑃(Ω = T) = 1
Axiom 3: probability measures behave like set measures.

𝑃 𝐴⋁𝐵 = 𝑇 = 𝑃 𝐴 = 𝑇 + 𝑃 𝐵 = 𝑇 − 𝑃(𝐴⋀𝐵 = 𝑇)



Joint and Conditional distributions of random 
variables
• 𝑃 𝑋, 𝑌 is the joint probability distribution over all possible 

outcomes 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 .
• 𝑃(𝑋|𝑌) is the conditional probability distribution of outcomes 
𝑃(𝑋 = 𝑥|𝑌 = 𝑦).

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦



MPE = MAP using Bayes’ rule
Suppose your goal is to minimize the probability of error:

𝑓(𝑥) = argmin 𝑃(Error|𝑋 = 𝑥)

…but the only things you know are the prior 𝑃(𝑌 = 𝑦), and the 
likelihood 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 .  Well, presto!  Using Bayes’ rule, we can 
prove that the MPE decision rule is:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦



MPE = MAP using naïve Bayes
Using naïve Bayes, the MPE decision rule is:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)I
"#$

%

𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)



Laplace Smoothing for Naïve Bayes
• The basic idea: add 𝑘 “unobserved observations” to the count of every unigram

• If a word occurs 2000 times in the training data, Count = 2000+k
• If a word occur once in training data, Count = 1+k
• If a word never occurs in the training data, then it gets a pseudo-Count of k

• Estimated probability of a word that occurred Count(w) times in the training data: = 

𝑃 𝑤 =
Count(𝑤) + 𝑘

∑! Count(𝑤) + 𝑘(1 + ∑! 1)

• Estimated probability of a word that never occurred in the training data (an “out of vocabulary” or OOV 
word):

𝑃 𝑂𝑂𝑉 =
0 + 𝑘

∑! Count(𝑤) + 𝑘(1 + ∑! 1)

• Notice that

𝑃 𝑂𝑂𝑉 +2
!

P(𝑤) = 1



Bayes Error Rate

The “Bayes Error Rate” is the smallest possible error rate of any 
classifier with labels 𝑦 and features 𝑥:

Error Rate = N
&

𝑃 𝑋 = 𝑥 min
!
𝑃(𝑌 ≠ 𝑦|𝑋 = 𝑥)

It’s called the “Bayes error rate” because it’s the error rate of the 
Bayesian classifier.



How IR and AI summarize confusions

Precision:

𝑃 = 𝑃(𝑌 = 1|𝑓 𝑋 = 1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall = Sensitivity = TPR:

𝑅 = 𝑃(𝑓 𝑋 = 1|𝑌 = 1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

0 1

0 TN FP

1 FN TP

Classified As:

Co
rr

ec
t L

ab
el

:



Training vs. development test vs. evaluation test corpora
Training Corpus = a set of data that you use in order to optimize the parameters of 
your classifier (for example, optimize which features you measure, what are the 
weights of those features, what are the thresholds, and so on).

Development Test (DevTest or Validation) Corpus = a dataset, separate from the 
training dataset, on which you test 200 different fully-trained classifiers (trained, 
e.g., using different training algorithms, or different features) to find the best.

Evaluation Test Corpus = a dataset that is used only to test the ONE classifier that 
does best on DevTest.  From this corpus, you learn how well your classifier will 
perform in the real world.



A mathematical definition of learning

• Environment: there are two random variables, 𝑥~𝑋 and 𝑦~𝑌, that 
are jointly distributed according to 

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)
• Data: 𝑃(𝑋, 𝑌) is unknown, but we have a sample of training data 

𝒟 = {(𝑥$, 𝑦$), … , (𝑥% , 𝑦%)}
• Objective: We would like a function 𝑓 such that 𝑓(𝑥) ≈ 𝑦
• Definition of learning: Learning is the task of estimating the function 
𝑓, given knowledge of nothing other than 𝒟.



Training a Multi-Class Perceptron
First, classify a training token, 𝑓(𝑥⃗) = argmax!"#$ 𝑤!% 𝑥⃗ .  Then:
• If 𝑓 𝑥⃗ = 𝑦 then do nothing
• If 𝑓 𝑥⃗ ≠ 𝑦 then
• Add x to the vector that should have been the winner:

𝑤& = 𝑤& + 𝜂𝑥⃗

• Subtract x from the vector that shouldn’t have won, but did:
𝑤'()) = 𝑤'()) − 𝜂𝑥⃗

• Don’t change any of the other classes



Linear Regression
𝜖+, = 𝑥⃗+%𝑤 − 𝑦+

,

If we differentiate that, we discover 
that:

∇-𝜖+, = 2𝜖+𝑥⃗+

So the stochastic gradient descent 
algorithm is:

𝑤 ← 𝑤 − 𝜂𝜖+𝑥⃗+
𝑤

𝜖45 = 𝑎𝑤5 + 𝑏𝑤 + 𝑐



Remember that for the perceptron, we have

𝑓 𝑥⃗+ =
𝑓# 𝑥⃗+
⋮

𝑓$ 𝑥⃗+
, 𝑓! 𝑥⃗+ = 81 𝑐 = argmax𝑤!% 𝑥⃗

0 otherwise

For logistic regression, we have

𝑓 𝑥⃗+ =
𝑓# 𝑥⃗+
⋮

𝑓$ 𝑥⃗+
, 𝑓! 𝑥⃗+ =

𝑒-!")⃗

∑/"#$ 𝑒-#")⃗

Perceptron versus logistic regression



Some details: Cross entropy

• The loss function is called “cross entropy,” because it is similar in 
some ways to the entropy of a thermodynamic system in physics.
• When you implement this in software, it’s a good idea to normalize by 

the number of training tokens, so that the scale is easier to 
understand:

𝔏 = −
1
𝑛
ln 𝑃 𝔇 𝑊 = −

1
𝑛
N
"#$

%

ln P C = 𝑐" 𝑋 = 𝑥⃗"



The gradient of the cross-entropy of a softmax

∇6!𝔏4 = −∇6! ln P C = 𝑐4 𝑋 = 𝑥⃗4

= ∇6! ln=
789

:

𝑒6"
#<⃗$ − ∇6! 𝑤=$

> 𝑥⃗4

=
𝑒6!#<⃗$

∑789: 𝑒6"#<⃗$
𝑥⃗4 − 𝑦4,=𝑥⃗4 = 𝜖4,=𝑥⃗4

…where: 𝜖4,= = 𝑓= 𝑥⃗4 − 𝑦4,= =

@%!
#&$

∑"'(
) @%"

#&$
− 1 𝑐4 = 𝑐

@%!
#&$

∑"'(
) @%"

#&$
− 0 otherwise



Back-propagation

The key idea of back-propagation is to 

calculate 'ℒ )

')!,#
(%) , for every layer l, for every 

pair of nodes j and k, as follows:

• Start at the output node.
• Apply the chain rule of calculus backward, 

layer-by-layer, from the output node 
backward toward the input.

𝑓

𝑥# 𝑥,

ℎ#
(#) ℎ,

(#)

ℎ#
(,) ℎ,

(,)

𝑤#,,
(#)



Back-propagation: splitting it up into excitation and 
activation

• Activation to excitation: here, the derivative is pre-computed.  For 
example, if g=ReLU, then g’=unit step:

ℎ$
(&) = ReLU 𝜉$

(&) ⟹
𝜕ℎ$

&

𝜕𝜉$
& = 𝑢 𝜉$

(&)

• Excitation to activation: here, the derivative is just the network weight!

𝜉$
(&) = 𝑏$

(&) +-
(

𝑤$,(
(&)ℎ(

(&*+) ⟹
𝜕𝜉$

&

𝜕ℎ(
(&*+) = 𝑤$,(

(&)



The pinhole camera equations

• These are similar triangles!  So
𝑦′
𝑓
=
−𝑦
𝑧
,

𝑥′
𝑓
=
−𝑥
𝑧

• Solving for (x’,y’), we get the 
pinhole camera equations:

𝑥* =
−𝑓𝑥
𝑧

, 𝑦′ =
−𝑓𝑦
𝑧

Image
plane

Object

Pinhole

y’

y

z

f z
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Sample review problem

Boofs Tizzles ?
Yellow 
pacman

Red 
teardrop

Blue 
diamond

Blue 
pentagon

Green
heptagon

Yellow 
square

Green
diamond



Sample review problem
Boofs Tizzles ?

Yellow 
pacman

Red 
teardrop

Blue 
diamond

Blue 
pentagon

Green
heptagon

Yellow 
square

Green
diamond

Let’s express these as feature vectors.
𝑥$ = # points,   𝑥+ = redness,
𝑥, = greenness,   𝑥- = blueness.

Y=Boof:  
2
1
1
0
,
1
1
0
0
,
4
0
0
1

Y=Tizzle:  
5
0
0
1

,
4
1
1
0
,
7
0
1
0

Y=?:  
4
0
1
0
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Y=Boof:  
2
1
1
0
,
1
1
0
0
,
4
0
0
1

Y=Tizzle:  
5
0
0
1

,
4
1
1
0
,
7
0
1
0

Y=?:  
4
0
1
0

• Naïve Bayes: If a naïve Bayes classifier is trained using these 
training data, how does it classify this test token?

• Perceptron: Assume we start with all-zero weights and 
biases, and 𝜂 = 1.  What are 𝑤 and 𝑏 after the first 4 training 
tokens?

• Logistic regression: Assume we start with all-zero weights 
and biases, and 𝜂 = 1. What are 𝑤ABBC, 𝑏ABBC, 𝑤DEFFGH, and 
𝑏DEFFGH after the first 1 training token?

• Two-layer neural net: Assume we start with all-zero weights 
and biases, and 𝜂 = 1.  Find 𝑏5

5 , the second bias term in the 
second layer, after the first 1 training token.



Naïve Bayes
Boofs Tizzles ?

Yellow 
pacman

Red 
teardrop

Blue 
diamond

Blue 
pentagon

Green
heptagon

Yellow 
square

Green
diamond

𝑃(𝑌 = boof|𝑋) =
𝑃(𝑌 = boof, 𝑋)

𝑃(𝑋)

𝑃 𝑌 = boof, 𝑋 =
4
0
1
0

= 𝑃 𝑌 = b 𝑃 𝑥$ = 4|𝑌 = b ⋯𝑃 𝑥- = 0|𝑌 = b

=
1
2

1 + 𝑘
3 + 4𝑘

1 + 𝑘
3 + 3𝑘

1 + 𝑘
3 + 3𝑘

2 + 𝑘
3 + 3𝑘

𝑃 𝑌 = tizzle, 𝑋 =
4
0
1
0

=
1
2

1 + 𝑘
3 + 4𝑘

2 + 𝑘
3 + 3𝑘

2 + 𝑘
3 + 3𝑘

2 + 𝑘
3 + 3𝑘



Perceptron
Boofs Tizzles ?

Yellow 
pacman

Red 
teardrop

Blue 
diamond

Blue 
pentagon

Green
heptagon

Yellow 
square

Green
diamond

Boof: 𝑌 = −1,  Tizzle: 𝑌 = +1
Start with 𝑤 = 0,0,0,0 . , 𝑏 = 0

• First training token: X=         = 2,1,1,0 . , 𝑌 = −1.  Token is misclassified 
(classifier output is undefined), so 𝑤 ← 𝑤 − 𝑥⃗ = −2,−1, −1,0 . and 𝑏 ←
𝑏 − 1 = −1.

• Second training token: X=          = 5,0,0,1 . , 𝑌 = +1.  Token is misclassified 
(𝑤.𝑥⃗ + 𝑏 < 0), so 𝑤 ← 𝑤 + 𝑥⃗ = 3,−1, −1,1 . and 𝑏 ← 𝑏 + 1 = 0.

• Third training token: X=          = 1,1,0,0 . , 𝑌 = −1.  Token is misclassified 
(𝑤.𝑥⃗ + 𝑏 > 0), so 𝑤 ← 𝑤 − 𝑥⃗ = 2,−2, −1,1 . and 𝑏 ← 𝑏 − 1 = −1.

• Fourth training token: X=          = 4,1,1,0 . , 𝑌 = +1.  Token is classified 
correctly (𝑤.𝑥⃗ + 𝑏 > 0), so 𝑤 and 𝑏 are unchanged.



Logistic Regression Boofs Tizzles ?
Yellow 
pacman

Red 
teardrop

Blue 
diamond

Blue 
pentagon

Green
heptagon

Yellow 
square

Green
diamond

Boof: 𝑌 = 1,0 .,  Tizzle: 𝑌 = 0,1 .

Start with 𝑤/001 = 0,0,0,0 . , 𝑏/001 = 0,
𝑤234456 = 0,0,0,0 . , 𝑏234456 = 0

First training token: X=         = 2,1,1,0 . , 𝑌 = 1,0 ..  

𝑓/001 𝑥⃗ =
𝑒)'(()

* &⃗89'(()

𝑒)'(()
* &⃗89'(() + 𝑒)+,--./

* &⃗89+,--./
= 0.5, 𝑓234456 𝑥⃗ = 0.5

𝜀",/001 = 0.5 − 1 = −0.5, 𝜀",234456 = 0.5 − 0 = 0.5

𝑤/001 ← 𝑤/001 − 𝜀",/001𝑥⃗ =
1
0.5
0.5
0

, 𝑤234456 ← 𝑤234456 − 𝜀",234456𝑥⃗ =
−1
−0.5
−0.5
0

𝑏/001 ← 𝑏/001 − 𝜀",/001 = 0.5, 𝑏234456 ← 𝑏234456 − 𝜀",234456 = −0.5



Two-Layer Network Boofs Tizzles ?
Yellow 
pacman

Red 
teardrop

Blue 
diamond

Blue 
pentagon

Green
heptagon

Yellow 
square

Green
diamondAssume two hidden nodes ℎ$ and ℎ+

with ReLU activation functions, and two
output nodes 𝑓$ and 𝑓+ with softmax
activation function.  All weights and 
biases start at zero.

First training token: X=         = 2,1,1,0 . , 𝑌 = 1,0 ..  
𝜉$
($) = 0 + ∑=#$- 0 s 𝑥= = 0.   ℎ$ = ReLU 0 = 0. Likewise ℎ+ = 0, likewise

𝜉$
(+) = 0 and 𝜉+

(+) = 0, so 𝑓$ 𝑥⃗ = >01
2

>01
2
8>02

2 = 0.5 and 𝑓+ 𝑥⃗ = 0.5. If we use 

cross-entropy as our loss function, then

𝑏+
+ ← 𝑏+

+ −
𝜕ℒ

𝜕𝜉+
+
𝜕𝜉+

+

𝜕𝑏+
+ = 0 − 𝑓+ 𝑥⃗ − 𝑦$,+ 1 = −0.5



Exam 1 Review

• Mechanics: How to take the exam
• Review topics

• Probability and Machine Learning

• Sample review problem
• Any of these four classifiers can solve this problem!
• The equations are a bit more complex for the two-layer network…


