Question 1

You’re on a phone call with your friend, trying to help figure out why their computer won’t start. There are only two possibilities, $Y = \text{CPU}$, or $Y = \text{PowerSupply}$, with prior probability $P(Y = \text{CPU}) = 0.3$.

You ask your friend whether the computer makes noise when they try to turn it on. There are two possibilities, $E = \text{quiet}$, and $E = \text{loud}$. You know that a power supply problem often leaves a quiet computer, but that the relationship is stochastic, as shown:

$$P(E = \text{noise}|Y = \text{CPU}) = 0.8, \quad P(E = \text{noise}|Y = \text{PowerSupply}) = 0.4$$

(a) What is the MAP classifier function $\hat{Y}(E)$, as a function of E?

(b) What is the Bayes error rate?

(c) CPU damage is more expensive than power supply damage, so let’s define a false alarm to be the case where your classifier says $\hat{Y} = \text{CPU}$, but the actual problem is $Y = \text{PowerSupply}$. Under this definition, what are the false-alarm rate and missed-detection rate of the MAP classifier?
Question 2
Consider the following binary logic function:

\[
y = \neg((x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2 \land \neg x_3))
\]

Convert truth values to numbers in the obvious way: let \(x_i = 1\) be a synonym for \(x_i = \text{True}\), and let \(x_i = 0\) by a synonym for \(x_i = \text{False}\). Let \(x = [x_1, x_2, x_3]^T\) and \(w = [w_1, w_2, w_3]^T\), let \(x^T w\) denote the dot product of vectors \(x\) and \(w\), and let \(u(\cdot)\) denote the unit step function. Find a set of parameters \(w_1, w_2, w_3\) and \(b\) such that the logic function shown above can be computed as \(y = u(w^T x + b)\).

Question 3
We want to implement a classifier that takes two input values, where each value is either 0, 1 or 2, and outputs a 1 if at least one of the two inputs has value 2; otherwise it outputs a 0. Can this function be implemented by a linear classifier? If so, construct a linear classifier that does it; if not, say why not.
Question 4
Consider a problem with a binary label variable, Y, whose prior is $P(Y = 1) = 0.4$. Suppose that there are 100 binary evidence variables, $E = [E_1, \ldots, E_{100}]$, each with likelihoods given by $P(E_i = 1|Y = 0) = 0.3$ and $P(E_i = 1|Y = 1) = 0.8$ for $1 \leq i \leq 100$.

(a) Specify the classifier function, $\hat{y}(e)$, for a naive Bayes classifier, where $e = [e_1, \ldots, e_{100}]$ is the set of observed values of the evidence variables.

(b) The naive Bayes classifier can be written as

$$\hat{y}(e) = \begin{cases} 1 & w^T e + b > 0 \\ 0 & \text{otherwise} \end{cases},$$

where $w^T e$ is the dot product between the vectors w and e. Find w and b (write them as expressions in terms of constants; don’t simplify).