

What should reinforcement learning learn?

Last time:

• Model-based learning: P(s'|s, a)

Today:

- Q-learning: q(s, a), the quality of action a in state s
- Policy gradient: estimate a stochastic policy π_a(s) = Pr(A_t = a|S_t = s); learn it by maximizing expected total return

The Quality of an Action

Q-learning splits Bellman's equation into two parts: $u(s) = r(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s'} P(s'|s, a) u(s')$

...becomes...

$$q(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a)u(s')$$
$$u(s) = \max_{a \in \mathcal{A}} q(s,a)$$

Example: Gridworld

$$r(s) = \begin{cases} +1 & s = (4,3) \\ -1 & s = (4,2) \\ -0.04 & \text{otherwise} \end{cases}$$

$$(s'|s,a) = \begin{cases} 0.8 & \text{intended} \\ 0.1 & \text{fall left} \\ 0.1 & \text{fall right} \end{cases}$$

 $\gamma = 1$

Gridworld: The Q-function

0.78	0.83	0.88		Calc
0.77 0.81	0.78 0.87	0.81 0.92	$\leftrightarrow \rightarrow$	
0.74	0.83	0.68		
0.76		0.66		
0.72 0.72		0.6469		9(5)0
0.68		0.42		
0.71	0.62	0.59	-0.74	
0.67 0.63	0.66 0.58	0.61 0.40	0.39 0.21	
0.66	0.62	0.55	0.37	

Calculated using a two-step value iteration:

$$q(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a)u(s')$$

$$u(s) = \max_{a \in \mathcal{A}} q(s, a)$$

Gridworld: Relationship between Q and U

 $u(s) = \max_{a \in \mathcal{A}} q(s, a)$

0.78 0.77 0.81 0.74	0.83 0.78 0.87 0.83	0.88 0.81 0.92 0.68	$ \bigcirc $	0.81	0.87	0.92	
0.76 0.72 0.72 0.68		0.66 0.6469 0.42		0.76		0.66	
0.71 0.67 0.63 0.66	0.62 0.66 0.58 0.62	0.59 0.61 0.40 0.55	-0.74 0.39 0.21 0.37	0.71	0.66	0.61	0.39

Q-learning

- In the reinforcement learning scenario, we don't know *P*(*s*'|*s*, *a*). We just want to play the game, and observe our earned reward, and from it, estimate *q*(*s*, *a*).
- On the t^{th} iteration of q-learning, suppose that we have an estimate $q_t(s, a)$. We can use that as follows:

Try action a_t in state s_t . Measure the reward r_t , and observe the estimated utility of the state we end up in $u_t(s_{t+1})$.

Example: Gridworld

Suppose we start out with $q_1(s, a) = 0$ for all states and actions.

Robot starts out in state $s_t = (3,1)$. Robot receives a reward of $r_t = -0.04$. Robot tries to move UP, ends up in $s_{t+1} = (4,1)$.

Now we update $q_{local}((3,1), UP)$:

 $q_{local}((3,1), UP) = r((3,1)) + \gamma u_t((4,1))$ = -0.04 + 0 = -0.04

q-local, the short-time estimate

$$q(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a)u(s')$$
$$q_{local}(s_t, a_t) = r_t + \gamma u_t(s_{t+1})$$

Q-local approximates the true quality of an action as:

- Instead of summing over P(s'|s, a), just set $s' = s_{t+1}$, i.e., whatever state followed s_t .
- Instead of the true value of u(s), use our current estimate, $u_t(s, a) = \max_a q_t(s, a)$.

$$q_{local}(s_t, a_t) = r_t + \gamma u_t(s_{t+1})$$

Problem: NOISY!

- s_{t+1} is random, and
- *u_t*(*s_{t+1}*) is not the real value of q, only our current estimate, therefore
- $q_{local}(s_t, a_t)$ might be very far away from q(s, a)!

Solutions:

- 1. If we're measuring using a table: interpolate, using a small learning rate η that's $0 < \eta < 1$: $q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \eta (q_{local}(s_t, a_t) - q_t(s_t, a_t))$
- 2. If we're measuring using a neural net, with parameters θ : use just one gradient update step, so that θ becomes the average over many successive gradient steps:

$$\theta_{t+1} = \theta_t - \eta \frac{\partial}{\partial \theta} \frac{1}{2} \left(q_t(s_t, a_t) - q_{local}(s_t, a_t) \right)^2$$

 $q_{local}(s_t, a_t) - q_t(s_t, a_t)$ is called the "time difference" or TD.

- 1. If the TD is positive, it means action a_t was <u>better</u> than we expected, so $q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \eta TD$ is an increase.
- 2. If the TD is negative, it means action a_t was <u>worse</u> than we expected, so $q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \eta TD$ is a decrease.

Putting it all together, here's the whole TD learning algorithm:

- 1. When you reach state s, use your current exploration versus exploitation policy to choose some action.
- 2. Observe the state s_{t+1} that you end up in, and the reward you receive, and then calculate q-local:

$$q_{local}(s_t, a_t) = r_t + \gamma \max_{a' \in \mathcal{A}} q_t(s_{t+1}, a')$$

3. Calculate the time difference, and update:

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \eta (q_{local}(s_t, a_t) - q_t(s_t, a_t))$$

$$\theta_{t+1} = \theta_t - \eta \frac{\partial}{\partial \theta} \frac{1}{2} \left(q_t(s_t, a_t) - q_{local}(s_t, a_t) \right)^2$$

TD learning is an off-policy learning algorithm

• TD learning is called an off-policy learning algorithm because it assumes an action

 $\underset{a' \in \mathcal{A}}{\operatorname{argmax}} q_t(s_{t+1}, a')$

...which is different from the action dictated by your current exploration versus exploitation policy.

 Sometimes off-policy learning doesn't converge, for example, because the TD-learning update is not taking advantage of your exploration.

On-policy learning: SARSA

We can create an "on-policy learning" algorithm by deciding in advance which action (a_{t+1}) we'll perform in state s_{t+1} , and then using that action in the update equation:

- 1. Assume that you're currently in state s_t , and you've already chosen action a_t .
- 2. Observe the state s_{t+1} that you end up in, and then use your current exploration vs. exploitation policy to already choose a_{t+1} !
- 3. Calculate q-local and the update equation as:

$$q_{local}(s_t, a_t) = r_t + \gamma q_t(s_{t+1}, a_{t+1})$$

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \eta (q_{local}(s_t, a_t) - q_t(s_t, a_t))$$

On-policy learning: SARSA

This algorithm is called SARSA (state-action-rewardstate-action) because:

- In order to compute the TD-learning version of q_{local} , you only need to know the tuple (s_t, a_t, r_t, s_{t+1}) : $q_{local}(s_t, a_t) = r_t + \gamma \max_{a' \in \mathcal{A}} q_t(s_{t+1}, a')$
- In order to compute the SARSA version of q_{local} , you need to have already picked out $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$: $q_{local}(s_t, a_t) = r_t + \gamma q_t(s_{t+1}, a_{t+1})$

Quiz

Try the quiz! https://us.prairielearn.com/pl/course_instance/147925/asse ssment/2417564

What should reinforcement learning learn?

Last time:

• Model-based learning: P(s'|s,a)

Today:

- Q-learning: q(s, a), the quality of action a in state s
- Policy gradient: estimate a stochastic policy π_a(s) = Pr(A_t = a|S_t = s); learn it by maximizing expected total return

Stochastic Policy

- Until now, we've mostly used deterministic policies, $\pi(s_t) = a_t$
- Now we need to a random policy. Say that the agent chooses action *a* with probability $\pi_a(s)$, thus

$$\boldsymbol{\pi}(s) = \begin{bmatrix} \pi_1(s) \\ \vdots \\ \pi_{|\mathcal{A}|}(s) \end{bmatrix} = \begin{bmatrix} P(A_t = 1 | S_t = s) \\ \vdots \\ P(A_t = |\mathcal{A}| | S_t = s) \end{bmatrix}$$

Stochastic Policy

$$\boldsymbol{\pi}(s) = \begin{bmatrix} \pi_1(s) \\ \vdots \\ \pi_{|\mathcal{A}|}(s) \end{bmatrix} = \begin{bmatrix} P(A_t = 1 | S_t = s) \\ \vdots \\ P(A_t = |\mathcal{A}| | S_t = s) \end{bmatrix}$$

- Notice this automatically includes a kind of epsilon-greedy exploration, as long as $\pi_a(s_t) > 0$ for every action
- Usually we calculate $\pi_a(s)$ as the softmax output of a neural network
- ... but how do we train the neural network?

Utility = Expected discounted sum of all future rewards

- The policy $\pi_a(s)$ chooses an action at random, then the unknown transition probabilities P(s'|s, a) choose a new state at random, and so on... call this sequence the "trajectory," $\tau = (a_t, s_{t+1}, a_{t+1}, s_{t+2}, a_{t+2}, ...)$.
- The utility $u(s_t)$ is the expected discounted sum of future rewards:

$$u(s_t) = E[v(\tau)] = \sum_{\tau} P(T = \tau)v(\tau)$$

...where $v(\tau) = r(s_t) + \gamma r(s_{t+1}) + \gamma^2 r(s_{t+2}) + \cdots$ is the discounted sum of future rewards corresponding to a particular trajectory τ .

Maximum-utility policy

Suppose $\pi_a(s)$ is a neural net with trainable parameters θ . We'd like to learn θ to maximize utility. Can we do that? Notice that $v(\tau)$ doesn't depend directly on the probabilities, only the probability $P(\tau)$ does:

$$\theta \leftarrow \theta + \eta \frac{\partial u(s_t)}{\partial \theta} = \theta + \eta \sum_{\tau} \frac{\partial P(\tau)}{\partial \theta} v(\tau)$$

Unfortunately, $P(\tau)$ is not so easy to differentiate:

$$P(\tau) = \pi_{a_t}(s_t) P(s_{t+1}|s_t, a_t) \pi_{a_{t+1}}(s_{t+1}) P(s_{t+2}|s_{t+1}, a_{t+1}) \cdots$$

Log probabilities are easier to differentiate than probabilities

Life would be much better if we were differentiating $\ln P(\tau)$:

$$\ln P(\tau) = \ln \pi_{a_t}(s_t) + \ln P(s_{t+1}|s_t, a_t) + \ln \pi_{a_{t+1}}(s_{t+1}) + \cdots$$

Then the solution would be:

$$\frac{\partial \ln P(\tau)}{\partial \theta} = \frac{\partial \ln \pi_{a_t}(s_t)}{\partial \theta} + 0 + \frac{\partial \ln \pi_{a_{t+1}}(s_{t+1})}{\partial \theta} + 0 + \cdots$$

...and if $\pi_a(s)$ is a softmax, then $\ln \pi_a(s)$ is easy to differentiate.

The derivative of a logarithm

If we need to calculate $\theta \leftarrow \theta + \eta \sum_{\tau} \frac{\partial P(\tau)}{\partial \theta} v(\tau)$, but we only know how to calculate $\frac{\partial \ln P(\tau)}{\partial \theta}$, what can we do? Here's the trick. Remember that: $\frac{\partial \ln P(\tau)}{\partial \theta} = \frac{1}{P(\tau)} \frac{\partial P(\tau)}{\partial \theta}$

Therefore...

$$\frac{\partial u(s_t)}{\partial \theta} = \sum_{\tau} \frac{\partial P(\tau)}{\partial \theta} v(\tau) = \sum_{\tau} P(\tau) \frac{\partial \ln P(\tau)}{\partial \theta} v(\tau) = E \left[\frac{\partial \ln P(\tau)}{\partial \theta} v(\tau) \right]$$

The policy gradient algorithm

- 1. Play the game k times, and store k different trajectories, $\tau_i = (a_{i,t}, s_{i,t+1}, a_{i,t+1}, s_{i,t+2}, a_{i,t+2}, ...)$
- 2. Approximate the expected loss by its average over the minibatch:

$$\mathcal{L} = -\frac{1}{k} \sum_{i=1}^{k} v(\tau_i) \ln P(\tau_i) \approx -E[v(\tau) \ln P(\tau)]$$

3. Backpropagate to maximize utility:

$$\theta \leftarrow \theta - \eta \frac{\partial \mathcal{L}}{\partial \theta} \approx \theta + \eta \frac{\partial u(s_t)}{\partial \theta}$$

Summary: Model-free RL

• Q-learning:

 $\begin{aligned} q_{local}(s_t, a_t) &= r_t + \gamma \max_{a' \in \mathcal{A}} q_t(s_{t+1}, a') \text{ or } q_{local}(s_t, a_t) = r_t + \gamma q_t(s_{t+1}, a_{t+1}) \\ & \text{then} \\ q_{t+1}(s_t, a_t) &= q_t(s_t, a_t) + \eta \big(q_{local}(s_t, a_t) - q_t(s_t, a_t) \big) \\ & \text{or} \\ \theta_{t+1} &= \theta_t - \eta \frac{\partial}{\partial \theta} \frac{1}{2} \big(q_t(s_t, a_t) - q_{local}(s_t, a_t) \big)^2 \end{aligned}$

• Policy gradient:

$$\frac{\partial u(s_t)}{\partial \theta} = \sum_{\tau} \frac{\partial P(\tau)}{\partial \theta} v(\tau) = \sum_{\tau} P(\tau) \frac{\partial \ln P(\tau)}{\partial \theta} v(\tau) = E \left[\frac{\partial \ln P(\tau)}{\partial \theta} v(\tau) \right]$$