
CS 440/ECE448 Lecture 32:
Model-Based Reinforcement

Learning
Mark Hasegawa-Johnson, 4/2024
These slides are in the public domain.

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

Outline

• Reinforcement learning
• Model-based learning
• On-policy vs. Off-policy learning
• Exploration vs. Exploitation

Review: Markov Decision Process
• MDP defined by states, actions, transition model, reward function
• The “solution” to an MDP is the policy: what do you do when you’re in any

given state
• The Bellman equation tells the utility of any given state, and incidentally, also

tells you the optimum policy. The Bellman equation is N nonlinear equations
in N unknowns (the policy), therefore it can’t be solved in closed form.
• Value iteration:

• At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i
steps in time

• … so finding the best action = optimize based on (i+1)-step lookahead
• Policy iteration:

• Find the utilities that result from the current policy,
• Improve the current policy

Reinforcement learning:
Basic scheme
But what if you don’t know 𝑃(𝑠’|𝑠, 𝑎) or 𝑟(𝑠)?
Answer: “learning by doing” (a.k.a. reinforcement learning).
In each time step:
• Take some action
• Observe the outcome of the action: successor state and reward
• Update some internal representation of the environment and policy

Key problems
1. What should you learn?
• Model-based learning: 𝑃(𝑠’|𝑠, 𝑎) is estimated using a neural network

or probability table, then use value iteration or policy iteration to find
the best policy
• Q-learning: 𝑄(𝑠, 𝑎), the quality of action a, is estimated using a neural

network or a table of numbers, and directly specifies the best action
• Policy learning: 𝜋(𝑠), the policy, is directly estimated using a neural

network or a table

Key problems, 2. In which order should you
study the states?
• Real-time learning

• In state 𝑠!, try action 𝑎!, see what reward 𝑟!	state 𝑠!"# results, and
immediately update your estimates of 𝑟(𝑠!) and 𝑃(𝑠!"#|𝑠! , 𝑎!)

• Experience replay buffer
• In state 𝑠!, try action 𝑎!, see what reward 𝑟!	state 𝑠!"# results, and store the

tuple (𝑠! , 𝑎! , 𝑟! , 𝑠!"#) in an experience replay buffer
• When the experience replay buffer is full, learn by drawing samples from it

according to some criterion that optimizes the rate at which you learn

Key problems, 3. Which actions should you
perform while learning?
• On-policy vs. Off-policy learning:

• On-policy: For each 𝜋(𝑠), try it, and learn 𝑃(𝑠’|𝑠, 𝑎 = 𝜋(𝑠))
• Off-policy: Try to learn the values of all possible actions

• Exploration vs. Exploitation
• Exploration: try actions at random, to see what happens
• Exploitation: try to act optimally (to maximize value)

Example of model-based reinforcement
learning: Theseus the Mouse

Claude Shannon and Theseus the Mouse. Public domain image, Bell
Labs.

https://www.youtube.com/watch?v=_9_AEVQ_p74

https://techchannel.att.com/playvideo/2010/03/16/In-Their-Own-Words-Claude-Shannon-Demonstrates-Machine-Learning
https://www.youtube.com/watch?v=_9_AEVQ_p74

Model-based reinforcement learning:
Theseus’ strategy

Learning phase:
• At each position in the maze (s),
• For every possible action 𝑎 ∈ Forward, Left, Right, Back :
• If the action succeeded in changing the state (𝑠’ ≠ 𝑠), then set
𝑃(𝑠’|𝑠, 𝑎) = 1
• If not, set 𝑃(𝑠’|𝑠, 𝑎) = 0 for all 𝑠’ ≠ 𝑠

Once you’ve learned the maze, then compute the best policy (𝜋(𝑠)) using
Value Iteration.
• If 𝑃(𝑠’|𝑠, 𝑎) 	 ∈ 0,1 , Value Iteration = BFS

Outline

• Reinforcement learning
• Model-based learning
• On-policy vs. Off-policy learning
• Exploration vs. Exploitation

On-policy learning: Laplace smoothing

• Let’s keep a table of numbers, 𝑁(𝑠, 𝑎, 𝑠′), telling how many times
action 𝑎 in state 𝑠 led to next-state 𝑠’

• At time 𝑡, in state 𝑠!, choose action 𝑎!, observe 𝑟! and 𝑠!"#, update:
𝑁 𝑠! , 𝑎! , 𝑠!"# += 1

𝑃 𝑠!"#|𝑠! , 𝑎! =
𝑁 𝑠! , 𝑎! , 𝑠!"# + 𝜆

∑$%∈𝒮𝑁 𝑠! , 𝑎! , 𝑠′ + 𝜆 𝒮
	

• On-policy learning: we only update 𝑃 𝑠!"#|𝑠! , 𝑎! corresponding to
the action that we performed. We don’t learn anything about other
actions.

On-policy learning: Neural network

• Estimate the probability table using a softmax:

𝑃 𝒔%|𝒔, 𝑎 =
exp 𝒔(𝑾)𝒔′

∑$%%∈𝒮 exp 𝒔(𝑾)𝒔′′
	

• At time 𝑡, in state 𝒔!, choose action 𝑎!, observe 𝒔!"#, update:
𝑾)! ← 𝑾)! + 𝜂∇𝑾"!

ln 𝑃 𝒔!"#|𝒔! , 𝑎!
• On-policy learning: we only update 𝑃 𝒔!"#|𝒔! , 𝑎! corresponding to
the action that we performed. We don’t learn anything about other
actions.

Off-policy learning: Neural network

• Estimate the probability table using a softmax:

𝑃 𝒔%|𝒔, 𝒂 =
exp 𝒔(, 𝒂(𝑾𝒔′

∑$%%∈𝒮 exp 𝒔(, 𝒂(𝑾𝒔′′
	

• At time 𝑡, in state 𝒔!, choose action 𝒂!, observe 𝒔!"#, update:
𝑾 ← 𝑾+ 𝜂∇𝑾 ln 𝑃 𝒔!"#|𝒔! , 𝒂!

• Off-policy learning: By updating 𝑾, we modify 𝑃 𝒔%|𝒔, 𝒂 for all
actions, not just for the one that we performed.

Benefits of On-policy vs. Off-policy learning

• Off-policy learning can converge more quickly because we update
𝑃 𝑠%|𝑠, 𝑎 for all actions, not just for the one that we performed.
• …However, off-policy learning might converge to the wrong answer!

In the limit, we might be guessing the results of actions we never
perform!
• Limiting ourselves to on-policy learning usually slows convergence but

makes it more stable.

Outline

• Reinforcement learning
• Model-based learning
• On-policy vs. Off-policy learning
• Exploration vs. Exploitation

Exploration vs. Exploitation
• Exploration: take a new action with unknown consequences

• Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

• Cons:
• When you’re exploring, you’re not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
• Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

• Cons:
• Might also prevent you from discovering the true optimal strategy

“Search represents a core feature of cognition:”
Exploration versus exploitation in space, mind, and society.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410143/

How to trade off exploration vs. exploitation
Epsilon-first strategy: when you reach state 𝑠, check how many times
you’ve tested each of its available actions.

• Explore for the first 𝑵𝒇𝒊𝒓𝒔𝒕 trials: If the least-explored action has been tested
fewer than 𝑵𝒇𝒊𝒓𝒔𝒕 times, then perform that action (𝑵𝒇𝒊𝒓𝒔𝒕 is an integer).

• Exploit thereafter: Once you’ve finished exploring, start exploiting (work to
maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
• With probability 𝝐, Explore: choose any action, uniformly at random.
• With probability (𝟏 − 𝝐), Exploit: choose the action with the highest expected

utility, according to your current estimates.
• Guarantee: 𝑃(𝑠’|𝑠, 𝑎) converges to its true value as #trials → ∞.

The epsilon-first strategy
The “epsilon-first” strategy tries
every action 𝑁+,-$! =

#
.
 times,

where 𝜖 is the desired modeling
precision. For example, if we want
| U𝑃	(𝑠’|𝑠, 𝑎) − 𝑃(𝑠’|𝑠, 𝑎)| 	< 	0.1

… then we might set 𝑁+,-$! = 10.*

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

* We can never guarantee that | *𝑃	(𝑠’|𝑠, 𝑎) − 𝑃(𝑠’|𝑠, 𝑎)| < 𝜖 with 100% confidence, but using 1/𝜖 trials is enough to be
pretty confident. If you’ve taken ECE 313 or CS 361, you should be able to work out the relationship more precisely.

The epsilon-first strategy
As you wander through the maze,
you reach some state, 𝑠.

• If there is any action, 𝑎, for which
𝑁 𝑠, 𝑎 < 1/𝜖, then try that
action.

• If not, then use value iteration
(with the current estimates of
𝑃(𝑠’|𝑠, 𝑎)) to decide what is the
best action to take.

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

The epsilon-first strategy
As you wander through the maze,
you reach some state, 𝑠.

• If there is any action, 𝑎, for which
𝑁 𝑠, 𝑎 < 1/𝜖, then explore (= try
the action, to see what it does).

• If not, then exploit your
knowledge (choose the action
that, according to your model, will
lead to the highest utility).

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

The epsilon-greedy strategy
Regardless of how few times or how many times you’ve been in state
𝑠: generate a uniform random number, 𝑧 ∈ (0,1).
• If 𝑧 ≤ 𝜖, then explore. Choose an action, 𝑎, uniformly at random,

and try it. See what 𝑠’ results. Increment 𝑁(𝑠, 𝑎) and 𝑁(𝑠, 𝑎, 𝑠′).
• This happens with probability 𝜖.

• If 𝑧 > 𝜖, then exploit. Use value iteration or policy iteration to figure
out the best action in the current state, then do that action.
• This happens with probability 1 − 	𝜖.

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/24
14902

https://us.prairielearn.com/pl/course_instance/147925/assessment/2414902
https://us.prairielearn.com/pl/course_instance/147925/assessment/2414902

Compare: Epsilon-first and Epsilon-greedy

Advantages of Epsilon-first:
• In the beginning, when 𝑃(𝑠’|𝑠, 𝑎) is

still inaccurate, we just try things at
random (explore).
• We can choose the level of

precision that’s “enough” for us.
When 𝑃(𝑠’|𝑠, 𝑎) reaches that
point, we stop exploring, and
instead, we focus on getting the
biggest rewards possible (exploit).

Advantages of Epsilon-greedy:
• Gradually, over a series of many

experiments, 𝑁(𝑠, 𝑎) → ∞
• Therefore, as the number of

experiments gets large,

| ,𝑃	(𝑠’|𝑠, 𝑎) − 𝑃(𝑠’|𝑠, 𝑎)| → 0

For both: 𝑃(𝑠’|𝑠, 𝑎) ≈ /($,),$%)
/($,))

Outline

• Reinforcement learning
• Model-based learning

𝑃 𝑠!"#|𝑠! , 𝑎! =
𝑁 𝑠! , 𝑎! , 𝑠!"# + 𝜆

∑$%∈𝒮𝑁 𝑠! , 𝑎! , 𝑠′ + 𝜆 𝒮
• On-policy vs. Off-policy learning

𝑾(! ←𝑾(! + 𝜂∇𝑾"!
ln 𝑃 𝒔!"#|𝒔! , 𝑎!

𝑾←𝑾+ 𝜂∇𝑾 ln 𝑃 𝒔!"#|𝒔! , 𝒂!
• Exploration vs. Exploitation

• Epsilon-first: 𝑁#$%&' =
(
)

• Epsilon-greedy: If 𝑧 ≤ 𝜖, for random number 𝑧 ∈ (0,1), then explore

