CS440/ECE448 Lecture 31: Exam 2 Review

Mark Hasegawa-Johnson, 4/2024
These slides are in the public domain

Outline

- How to take the exam
- Topics
- Search, MDP, Minimax, Expectiminimax, Game Theory
- Unification, Vector Semantics, Robotics
- Sample problems

How to take the exam

- Reserve a time at https://us.prairietest.com/
- Show up at the appointed time to take the exam
- There will be 8 multiple choice questions:
- search (lectures 18-19), Markov decision process (lecture 20), minimax (lecture 21), expectiminimax (lecture 22), static game theory (lecture 23)
- logic (lectures 26-27), vector semantics (lectures 28-29), robotics (lec 30).
- Not covered: repeated games (lec24), privacy (lec25)

Search

- BFS, DFS, UCS, A*
- Admissible heuristic: $\hat{h}(n) \leq h(n)$
- Consistent heuristic: $\hat{h}(n)-\hat{h}(m) \leq h(n, m)$
- $\hat{h}(n)=0$ is a valid heuristic (equal to UCS), but usually we want to invent an $\hat{h}(n)$ as large as we can, subject to one of the two constraints above (depending on whether we want to re-open closed nodes).

Markov Decision Processes

- Bellman equation:

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

- Value iteration:

$$
u_{i}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u_{i-1}\left(s^{\prime}\right)
$$

- Policy iteration:

$$
\begin{aligned}
& u_{i}(s)=r(s)+\gamma \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, \pi_{i}(s)\right) u_{i}\left(s^{\prime}\right) \\
& \pi_{i+1}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u_{i}\left(s^{\prime}\right)
\end{aligned}
$$

Minimax

- Alternating two-player zero-sum games
- $\Lambda=$ a max node, $\mathrm{V}=$ a min node

- Minimax search
- $v(s)=\max _{a} v(\operatorname{child}(s, a))$ or $v(s)=\min _{a} v(\operatorname{child}(s, a))$
- Limited-horizon computation and heuristic evaluation functions

$$
v(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\cdots
$$

- Alpha-beta search
- Min node can update beta, Max node can update alpha
- If beta ever falls below alpha, prune the rest of the children
- Computational complexity of minimax and alpha-beta
- Minimax is $O\left\{b^{d}\right\}$. With optimal move ordering, alpha-beta is $O\left\{b^{d / 2}\right\}$.

Expectiminimax

Bellman equation $=$ expectimax:

$$
u(s)=\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

Expectiminimax:
$u(s)$
$= \begin{cases}\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a max state } \\ \min _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a min state }\end{cases}$

Game Theory

- Dominant strategy
- a strategy that's optimal for one player, regardless of what the other player does
- Not all games have dominant strategies
- Nash equilibrium
- an outcome (one action by each player) such that, knowing the other player's action, each player has no reason to change their own action
- Every game with a finite set of actions has at least one Nash equilibrium, though it might be a mixed-strategy equilibrium.
- Pareto optimal
- an outcome such that neither player would be able to win more without simultaneously forcing the other player to lose more
- Every game has at least one Pareto optimal outcome. Usually there are many, representing different tradeoffs between the two players.
- Mixed strategies
- A mixed strategy is optimal only if there's no reason to prefer one action over the other, i.e., if $0 \leq p \leq 1$ and $0 \leq q \leq 1$ such that:

$$
\begin{aligned}
& (1-p) w+p x=(1-p) y+p z \\
& (1-q) a+q c=(1-q) b+q d
\end{aligned}
$$

Logic

- Logic:
- \neg (not),\wedge (and),\vee (or), \Rightarrow (implies), \Leftrightarrow (equivalent)
- First-Order Logic: $\exists x: F(x)$ (there exists), $\forall x: F(x)$
- Proving "there exists" theorems: find an x that satisfies the statement
- Variable normalization: each rule uses a different set of variable names
- Unification: Find a substitution $S:\left\{\mathcal{V}_{P}, \mathcal{V}_{Q}\right\} \rightarrow\left\{\mathcal{V}_{Q}, C\right\}$ such that $S(P)=$ $S(Q)=U$, or prove that no such substitution exists
- Forward-chaining: Search problem in which each action is a unification, and the state is the set of all known true propositions
- Backward-chaining: Search problem in which each action is a unification, and the state is the goal (the proposition whose truth needs to be proven)

Vector Semantics

- Context bag-of-words (CBOW), generative loss:

$$
\mathcal{L}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{j=-c, j \neq 0}^{c} \ln \frac{\exp \left(\boldsymbol{v}_{t}^{T} \boldsymbol{v}_{t+j}\right)}{\sum_{v \in \mathcal{V}} \exp \left(\boldsymbol{v}^{T} \boldsymbol{v}_{t+j}\right)}
$$

- Skip-gram, contrastive loss:

$$
\mathcal{L}=-\frac{1}{T} \sum_{t=1}^{T}\left(\sum_{v, \mathcal{D}_{+}\left(w_{t}\right)} \ln \frac{1}{1+e^{-\boldsymbol{v}^{\prime} v_{t}}}+\sum_{v, \in \mathcal{D}_{-}\left(w_{t}\right)} \ln \frac{1}{1+e^{\boldsymbol{v}^{\prime} \boldsymbol{v}_{t}}}\right)
$$

- Attention

$$
\boldsymbol{c}_{i}=\boldsymbol{V}^{\boldsymbol{T}} \operatorname{softmax}\left(\boldsymbol{K} \boldsymbol{q}_{i}\right)=\sum_{t} \frac{\exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}\right)}{\sum_{\tau} \exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{\tau}\right)} \boldsymbol{v}_{t}
$$

- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional encoding: $\boldsymbol{x}_{t}+=\left[\cos \left(\frac{\pi t}{T}\right), \cdots, \sin \left(\frac{\pi D t}{2 T}\right)\right]^{T}$

Robotics

- Workspace (e.g., $\boldsymbol{w}=[x, y]^{T}$) vs. Configuration space (e.g., $\boldsymbol{q}=$ $\left.\left[\theta_{1}, \theta_{2}\right]^{T}\right)$
- Path planning: shortest path in configuration space
- First, map obstacles from workspace into configuration space
- Visibility graph: states=vertices of obstacles in configuration space
- Rapid Random Trees (RRT): states=random, resampled near the best path after every iteration
- Trajectory control
- Time scaling: Constraints on motor torque, workspace velocity
- Proportion-Integral-Derivative (PID) controller: Smooth out oscillations
- Model predictive control: Plan for the possibility of error

