
CS440/ECE448
Lecture 31: Exam 2

Review
Mark Hasegawa-Johnson, 4/2024

These slides are in the public domain

Outline

• How to take the exam
• Topics

• Search, MDP, Minimax, Expectiminimax, Game Theory
• Unification, Vector Semantics, Robotics

• Sample problems

How to take the exam

• Reserve a time at https://us.prairietest.com/
• Show up at the appointed time to take the exam
• There will be 8 multiple choice questions:

• search (lectures 18-19), Markov decision process (lecture 20), minimax
(lecture 21), expectiminimax (lecture 22), static game theory (lecture 23)

• logic (lectures 26-27), vector semantics (lectures 28-29), robotics (lec 30).

• Not covered: repeated games (lec24), privacy (lec25)

https://us.prairietest.com/

Search

• BFS, DFS, UCS, A*
• Admissible heuristic: !ℎ 𝑛 ≤ ℎ 𝑛
• Consistent heuristic: !ℎ 𝑛 − !ℎ 𝑚 ≤ ℎ 𝑛,𝑚
• !ℎ 𝑛 = 0 is a valid heuristic (equal to UCS), but usually we want to

invent an !ℎ 𝑛 as large as we can, subject to one of the two
constraints above (depending on whether we want to re-open closed
nodes).

Markov Decision Processes

• Bellman equation:

𝑢 𝑠 = 𝑟 𝑠 + 𝛾max
!
*
"#

𝑃 𝑆$%& = 𝑠′|𝑆$ = 𝑠, 𝑎 𝑢 𝑠′

• Value iteration:
𝑢'(𝑠) = 𝑟 𝑠 + 𝛾max

!
*
"#

𝑃 𝑆$%& = 𝑠′|𝑆$ = 𝑠, 𝑎 𝑢'(&(𝑠′)

• Policy iteration:

𝑢'(𝑠) = 𝑟 𝑠 + 𝛾*
"#

𝑃 𝑆$%& = 𝑠′|𝑆$ = 𝑠, 𝜋'(𝑠) 𝑢'(𝑠′)

𝜋'%& 𝑠 = argmax
!

*
"!
𝑃 𝑆$%& = 𝑠′|𝑆$ = 𝑠, 𝑎 𝑢' 𝑠#

Minimax
• Alternating two-player zero-sum games
• ⋀ = a max node, ⋁ = a min node

• Minimax search
• 𝑣 𝑠 = max

!
𝑣(child(𝑠, 𝑎)) or 𝑣 𝑠 = min

!
𝑣(child(𝑠, 𝑎))

• Limited-horizon computation and heuristic evaluation functions
𝑣 𝑠 = 𝑤6𝑓6 𝑠 + 𝑤7𝑓7 𝑠 + ⋯

• Alpha-beta search
• Min node can update beta, Max node can update alpha
• If beta ever falls below alpha, prune the rest of the children

• Computational complexity of minimax and alpha-beta
• Minimax is 𝑂{𝑏!}. With optimal move ordering, alpha-beta is 𝑂{𝑏!/#}.

2 5 14

X X X X

Expectiminimax

Bellman equation = expectimax:

𝑢 𝑠 = max
!
*
"#

𝑃 𝑆$%& = 𝑠# 𝑆$ = 𝑠, 𝑎 𝑢(𝑠#)

Expectiminimax:
𝑢 𝑠

=

max
!
*
"#

𝑃 𝑆$%& = 𝑠# 𝑆$ = 𝑠, 𝑎 𝑢(𝑠#) 𝑠	is	amax state

min
!
*
"#

𝑃 𝑆$%& = 𝑠# 𝑆$ = 𝑠, 𝑎 𝑢(𝑠#) 𝑠	is	amin state

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 -1 1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T H

Game Theory
• Dominant strategy

• a strategy that’s optimal for one player, regardless of what the other player does
• Not all games have dominant strategies

• Nash equilibrium
• an outcome (one action by each player) such that, knowing the other player’s action, each player has no

reason to change their own action
• Every game with a finite set of actions has at least one Nash equilibrium, though it might be a mixed-strategy

equilibrium.

• Pareto optimal
• an outcome such that neither player would be able to win more without simultaneously forcing the other

player to lose more
• Every game has at least one Pareto optimal outcome. Usually there are many, representing different tradeoffs

between the two players.

• Mixed strategies
• A mixed strategy is optimal only if there’s no reason to prefer one action over the other, i.e., if 0 ≤ 𝑝 ≤ 1 and
0 ≤ 𝑞 ≤ 1 such that:

1− 𝑝 𝑤 + 𝑝𝑥 = 1− 𝑝 𝑦 + 𝑝𝑧
1− 𝑞 𝑎 + 𝑞𝑐 = 1− 𝑞 𝑏 + 𝑞𝑑

Logic

• Logic:
• ¬ (not) , ∧ (and) , ∨ (or), ⟹ (implies), ⟺ (equivalent)
• First-Order Logic: ∃𝑥:𝐹 𝑥 (there exists), ∀𝑥:𝐹(𝑥)

• Proving “there exists” theorems: find an x that satisfies the statement
• Variable normalization: each rule uses a different set of variable names
• Unification: Find a substitution 𝑆: 𝒱$, 𝒱% → {𝒱% , 𝐶} such that S 𝑃 =
𝑆 𝑄 = 𝑈, or prove that no such substitution exists
• Forward-chaining: Search problem in which each action is a unification,

and the state is the set of all known true propositions
• Backward-chaining: Search problem in which each action is a unification,

and the state is the goal (the proposition whose truth needs to be proven)

Vector Semantics
• Context bag-of-words (CBOW), generative loss:

ℒ = −
1
𝑇?
"#$

%

?
&#'(,&*+

(

ln
exp 𝒗"%𝒗",&

∑𝒗∈𝒱 exp 𝒗%𝒗",&

• Skip-gram, contrastive loss:

ℒ = −
1
𝑇?
"#$

%

?
𝒗0∈𝒟!(3")

ln
1

1 + 𝑒'𝒗0#𝒗"
+ ?
𝒗0∈𝒟$(3")

ln
1

1 + 𝑒𝒗0#𝒗"

• Attention

𝒄5 = 𝑽𝑻softmax 𝑲𝒒5 =?
"

exp 𝒒5%𝒌"
∑7 exp 𝒒5%𝒌7

𝒗"

• Self-attention, Multi-headed attention, Cross-attention, and Masked attention

• Positional encoding: 𝒙" += cos 8"
%
,⋯ , sin 89"

:%

%

Robotics

• Workspace (e.g., 𝒘 = [𝑥, 𝑦]>) vs. Configuration space (e.g., 𝒒	 =
[𝜃6, 𝜃7]>)
• Path planning: shortest path in configuration space

• First, map obstacles from workspace into configuration space
• Visibility graph: states=vertices of obstacles in configuration space
• Rapid Random Trees (RRT): states=random, resampled near the best path

after every iteration
• Trajectory control

• Time scaling: Constraints on motor torque, workspace velocity
• Proportion-Integral-Derivative (PID) controller: Smooth out oscillations
• Model predictive control: Plan for the possibility of error

