CS440/ECE448 Lecture 30: Robotics

Mark Hasegawa-Johnson, 4/2024
These slides are in the public domain

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Proportion-Integral-Derivative (PID) controller
- Model predictive control

What is a "Robot"?

Example: Shaky the robot, 1972
https://en.wikipedia.org/wiki/Shakey_the_robot

- Planning
- Antenna for radio link
- On-board logic
- Camera control unit
- Perceiving
- Range finder
- Television camera
- Bump detector
- Acting
- Caster wheel
- Drive motor
- Drive wheel

Example: Robot Arm

Adeept robot arm for Arduino (from Amazon)

- How does the robot arm decide when it has successfully grasped a cup?
- How does it find the shortest path for its hand?

Configuration Space Example: Robot Arm

https://www.youtube.com/watch?v=P2r9U4wkjcc

How to Make Hydraulic Powered Robotic Arm from Cardboard

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Time scaling
- Proportion-Integral-Derivative (PID) controller
- Model predictive control

The Robot Arm Reaching Problem

https://www.mathworks.com/help/fuzzy/modeling-inverse-kinematics-in-a-robotic-arm.html

- Our goal is to reach a particular location (x, y)
- But we can't control (x, y) directly! What we actually control is $\left(\theta_{1}, \theta_{2}\right)$.

Workspace vs. Configuration space

- A robot's workspace, \mathcal{W}, is the physical landscape in which it operates, $\mathcal{W} \subset \mathbb{R}^{3}$.
- Configuration space, C, is the set of joint angles that govern the robot's shape. For example, if we have four angles to control, then $C \subset \mathbb{R}^{4}$:
$\boldsymbol{q}=\left[\begin{array}{c}\text { shoulder azimuth } \\ \text { shoulder elevation } \\ \text { elbow elevation } \\ \text { gripper opening }\end{array}\right] \in C \subset \mathbb{R}^{4}$

How to Make Hydraulic Powered Robotic Arm from Cardboard

Forward kinematics

The forward kinematics function, $\varphi_{\boldsymbol{b}}(\boldsymbol{q})$, maps (point on robot \times configuration space) \rightarrow (workspace). This is just geometry. Example:

- $\boldsymbol{b}=\left[b_{1}, b_{2}\right]^{T}=$ a particular point on the arm which is b meters from the shoulder, $0 \leq b_{1} \leq L_{1}, 0 \leq b_{2} \leq L_{2}$
- $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}\right]^{T}$
 inverse-kinematics-in-a-robotic-arm.html

$$
\varphi_{\boldsymbol{b}}(\boldsymbol{q})=\left\{\begin{array}{cl}
{\left[\begin{array}{c}
b_{1} \cos \theta_{1} \\
b_{1} \sin \theta_{1}
\end{array}\right]} & b_{2}=0 \\
{\left[\begin{array}{c}
L_{1} \cos \theta_{1}+b_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
L_{1} \sin \theta_{1}+b_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]} & b_{1}=L_{1}
\end{array}\right.
$$

The Robot Arm Reaching Problem

Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml
Configuration Space Visualization of 2-D Robotic Manipulator
Workspace

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course instance/147925/assessment/24 12878

Obstacles and Inverse kinematics

- Obstacles are things in the workspace, \mathcal{W}, that we don't want to run into.
- We want to plan a path through configuration space, C, such that we don't run into any obstacle.
- In order to do that, we need inverse kinematics: a function that converts obstacles in the workspace, $\mathcal{W}_{\text {obs }}$, into equivalent obstacles in configuration space, $C_{\text {obs }}$.

$$
C_{\text {obs }}=\left\{q: \exists b: \varphi_{b}(\boldsymbol{q}) \in \mathcal{W}_{\text {obs }}\right\}
$$

- For example: we usually do this by just exhaustively testing every point in configuration space, to see if it runs into an obstacle.

The Robot Arm Reaching Problem

Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml
Configuration Space Visualization of 2-D Robotic Manipulator
Workspace

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Time scaling
- Proportion-Integral-Derivative (PID) controller
- Model predictive control
- Model-based and model-free RL

The planning problem

What is the best way to get from configuration 1 to configuration 2 ?

What is "best"?

We need some way to define the word "best."
Assumption: The shortest path in C-space is the best way to get from config 1 to config 2.

Implied assumption:
Longer path in C-space =
More manipulation of robot motors = Greater energy expenditure = Bad.

Finding the shortest path

Here are some algorithms you know that are guaranteed to find the shortest path:

- Dijkstra's algorithm (BFS)
- A* search

In fact, A* search was invented as a solution to the robot path planning problem. However, A^{*} search is not quite well-suited to this problem, because...

A* requires discretizing the search space

A* assumes a discrete search space.
To apply it to the robot path-planning problem, we first need to discretize C-space.

We can discretize it using a rectangular grid, but doing so reduces the precision of our answer.

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Time scaling
- Proportion-Integral-Derivative (PID) controller
- Model predictive control
- Model-based and model-free RL

Visibility Graph

Suppose all the obstacles are polygons in C -space. Then the shortest path is guaranteed to be:

- From starting point to the corner of an obstacle, then...
- ...from that corner to another corner, then....
- ...from the corner of an obstacle to the goal.

Visibility Graph

The algorithm, then, is:

1. Find all the corners.
2. Find the distances between every pair of corners.
3. Search that graph, using A*, to find the best path.

Limitations

The limitation of a visibility graph: it only works if the obstacles are polygons in C-space. If obstacles are arcs, they don't have corners.

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Time scaling
- Proportion-Integral-Derivative (PID) controller
- Model predictive control
- Model-based and model-free RL

C-Space Best-path algorithms

- A* on a rectangular grid
- Search nodes: squares on the grid
- A* on a visibility graph
- Search nodes: obstacle corners
- A* on a graph of rapid random trees (RRT)
- Search nodes: randomly sampled points

RRT

1. Generate a bunch of randomly sampled points to serve as search nodes
2. Eliminate the points that are inside obstacles
3. Perform A^{*} over the remaining points to find the best path
4. Generate more samples in the vicinity of best points
5. Repeat steps 2 through 4

RRT

1. Generate a bunch of randomly sampled points to serve as search nodes
2. Eliminate the points that are inside obstacles
3. Perform A^{*} over the remaining points to find the best path
4. Generate more samples in the vicinity of best points
5. Repeat steps 2 through 4

RRT

1. Generate a bunch of randomly sampled points to serve as search nodes
2. Eliminate the points that are inside obstacles
3. Perform A^{*} over the remaining points to find the best path
4. Generate more samples in the vicinity of best points
5. Repeat steps 2 through 4

RRT

1. Generate a bunch of randomly sampled points to serve as search nodes
2. Eliminate the points that are inside obstacles
3. Perform A* over the remaining points to find the best path
4. Generate more samples in the vicinity of best points
5. Repeat steps 2 through 4

RRT

1. Generate a bunch of randomly sampled points to serve as search nodes
2. Eliminate the points that are inside obstacles
3. Perform A* over the remaining points to find the best path
4. Generate more samples in the vicinity of best points
5. Repeat steps 2 through 4

Key benefits of RRT

- Even with very limited computation (e.g., you can only afford one iteration), you still get a path that solves the problem
- In the limit of infinite computation (infinite \# iterations), you get the best possible continuous-space path

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Time scaling
- Proportion-Integral-Derivative (PID) controller
- Model predictive control

Trajectory control: maximum torque

Now that you have an optimum path, how fast should the robot travel along that path?

Consideration \#1: maximum torque. Find $\boldsymbol{q}(t)=\left[\begin{array}{l}\theta_{1}(t) \\ \theta_{2}(t)\end{array}\right]$ so that

$$
\left|\frac{d^{2} \theta_{1}}{d t^{2}}\right| \leq \max _{1},\left|\frac{d^{2} \theta_{2}}{d t^{2}}\right| \leq \max _{2}
$$

Trajectory control: maximum safe velocity

Consideration \#2: maximum safe velocity.
Find $\boldsymbol{q}(t)=\left[\begin{array}{l}\theta_{1}(t) \\ \theta_{2}(t)\end{array}\right]$ so that

$$
\sqrt{\left(\frac{d w_{1}}{d t}\right)^{2}+\left(\frac{d w_{2}}{d t}\right)^{2}} \leq v_{\text {max }}
$$

...where $\boldsymbol{w}(t)$ is any solution to the inverse kinematics:

$$
\boldsymbol{w}(t) \in\left\{\boldsymbol{w}: \exists \boldsymbol{b}: \varphi_{\boldsymbol{b}}(\boldsymbol{q}(t))=\boldsymbol{w}(t)\right\}
$$

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Time scaling
- Proportion-Integral-Derivative (PID) controller
- Model predictive control

Trajectory control: error management!!!

Consideration \#3: what do you do if you start on a path but discover that your motor is miscalibrated and you're going the wrong direction?

P-controller

A proportional controller (P-controller) adds some extra torque in proportion to the error:

$$
\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=K(\boldsymbol{q}(t)-\boldsymbol{r}(t))
$$

P-controller Problems

A P-controller tends to result in oscillating overshoot.

PD-controller

A proportional-derivative controller (PDcontroller) adds some extra torque in proportion to the error of the derivative:

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=K_{P}(\boldsymbol{q}(t)-r(t)) \\
+K_{D}(\dot{\boldsymbol{q}}(t)-\dot{\boldsymbol{r}}(t))
\end{gathered}
$$

Doing this can smooth out the trajectory, but can leave some long-term error

PID-controller

A proportional-integral-derivative controller (PID-controller) adds some extra torque in proportion to the error of the integral:

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=K_{P}(\boldsymbol{q}(t)-\boldsymbol{r}(t)) \\
+K_{I} \int_{0}^{t}(\boldsymbol{q}(\tau)-\boldsymbol{r}(\tau)) d \tau \\
+K_{D}(\dot{\boldsymbol{q}}(t)-\dot{\boldsymbol{r}}(t))
\end{gathered}
$$

The P term fixes short-term errors.
The I term fixes long-term errors.
The D term smooths out oscillations.

Outline

- The robot path planning problem
- Workspace vs. Configuration space
- Path planning
- Visibility graph
- Rapid Random Trees (RRT)
- Trajectory control
- Time scaling
- Proportion-Integral-Derivative (PID) controller
- Model predictive control

What if your motors behave randomly?

- What if your motors have some randomness?
- Then you might not be able to plan an exact trajectory.
- The best you can do is plan a trajectory that goes in the right general direction.

Model predictive control

... means the following strategy.

1. Plan an optimum trajectory
2. Go partway
3. Observe where you are
4. Recalculate the optimal trajectory
5. Repeat

Summary

- The robot path planning problem
- Workspace (e.g., $\boldsymbol{w}=[x, y]^{T}$) vs. Configuration space (e.g., $\boldsymbol{q}=$ $\left.\left[\theta_{1}, \theta_{2}\right]^{T}\right)$
- Path planning
- Visibility graph: states=vertices in configuration space
- Rapid Random Trees (RRT): states=random, resampled near the best path after every iteration
- Trajectory control
- Time scaling: Constraints on motor torque, workspace velocity
- Proportion-Integral-Derivative (PID) controller: Smooth out oscillations
- Model predictive control: Plan for the possibility of error

