
CS440/ECE448
Lecture 30: Robotics

Mark Hasegawa-Johnson, 4/2024
These slides are in the public domain

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

What is a “Robot”?
Example: Shaky the robot, 1972
https://en.wikipedia.org/wiki/Shakey_the_robot

• Planning
• Antenna for radio link
• On-board logic
• Camera control unit

• Perceiving
• Range finder
• Television camera
• Bump detector

• Acting
• Caster wheel
• Drive motor
• Drive wheel

Example: Robot Arm
Adeept robot arm for Arduino (from Amazon)

• How does the robot arm decide
when it has successfully grasped
a cup?
• How does it find the shortest

path for its hand?

Configuration Space Example: Robot Arm
https://www.youtube.com/watch?v=P2r9U4wkjcc

https://www.youtube.com/watch?v=P2r9U4wkjcc

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Time scaling
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

The Robot Arm Reaching Problem
https://www.mathworks.com/help/fuzzy/modeling-inverse-kinematics-in-a-robotic-arm.html

• Our goal is to reach a
particular location (x,y)
• But we can’t control (x,y)

directly! What we actually
control is (𝜃!, 𝜃").

Workspace vs. Configuration space
• A robot’s workspace, 𝒲, is the

physical landscape in which it
operates, 𝒲 ⊂ ℝ#.

• Configuration space, 𝐶, is the set of
joint angles that govern the robot’s
shape. For example, if we have four
angles to control, then 𝐶 ⊂ ℝ$:

𝒒 =

shoulder azimuth
shoulder elevation
elbow elevation
gripper opening

∈ 𝐶 ⊂ ℝ$

Forward kinematics
The forward kinematics function, 𝜑𝒃(𝒒), maps (point
on robot × configuration space)→(workspace). This is
just geometry. Example:

• 𝒃 = [𝑏!, 𝑏"]# = a particular point on the arm which is 𝑏
meters from the shoulder, 0 ≤ 𝑏! ≤ 𝐿!, 0 ≤ 𝑏" ≤ 𝐿"

• 𝒒 = [𝜃!, 𝜃"]#

𝜑𝒃 𝒒 =

𝑏! cos 𝜃!
𝑏! sin 𝜃!

𝑏" = 0

𝐿! cos 𝜃! + 𝑏" cos 𝜃! + 𝜃"
𝐿! sin 𝜃! + 𝑏" sin 𝜃! + 𝜃"

𝑏! = 𝐿!

Image © https://www.mathworks.com/help/fuzzy/modeling-
inverse-kinematics-in-a-robotic-arm.html

The Robot Arm Reaching Problem
Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/24
12878

https://us.prairielearn.com/pl/course_instance/147925/assessment/2412878
https://us.prairielearn.com/pl/course_instance/147925/assessment/2412878

Obstacles and Inverse kinematics
• Obstacles are things in the workspace, 𝒲, that we

don’t want to run into.
• We want to plan a path through configuration

space, 𝐶, such that we don’t run into any obstacle.

• In order to do that, we need inverse kinematics: a
function that converts obstacles in the workspace,
𝒲"#$, into equivalent obstacles in configuration
space, 𝐶"#$.

𝐶"#$ = 𝑞: ∃𝑏: 𝜑% 𝒒 ∈ 𝒲"#$

• For example: we usually do this by just exhaustively
testing every point in configuration space, to see if it
runs into an obstacle.

Image © https://www.mathworks.com/help/fuzzy/modeling-
inverse-kinematics-in-a-robotic-arm.html

The Robot Arm Reaching Problem
Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Time scaling
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

• Model-based and model-free RL

The planning
problem
What is the best way
to get from
configuration 1 to
configuration 2? co

nf
ig

ur
at

io
n

1
co

nf
ig

ur
at

io
n

2

Workspace C-Space

Workspace C-Space

*

*

What is “best”?

We need some way to define the word
“best.”

Assumption: The shortest
path in C-space is the best
way to get from config 1 to

config 2.

Implied assumption:
Longer path in C-space =
More manipulation of robot motors =
Greater energy expenditure =
Bad.

co
nf

ig
ur

at
io

n
1

co
nf

ig
ur

at
io

n
2

Workspace C-Space

Workspace C-Space

*

*

Finding the shortest path

Here are some algorithms you know that are guaranteed to find the
shortest path:
• Dijkstra’s algorithm (BFS)
• A* search

In fact, A* search was invented as a solution to the robot path planning
problem. However, A* search is not quite well-suited to this problem,
because…

A* requires discretizing the
search space

A* assumes a discrete search space.
To apply it to the robot path-planning
problem, we first need to discretize
C-space.
We can discretize it using a
rectangular grid, but doing so
reduces the precision of our answer.

*

*

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Time scaling
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

• Model-based and model-free RL

Visibility Graph

Suppose all the obstacles are polygons in
C-space. Then the shortest path is
guaranteed to be:
• From starting point to the corner of an

obstacle, then…
• …from that corner to another corner,

then….
• …from the corner of an obstacle to the

goal.

*

*

Visibility Graph

The algorithm, then, is:
1. Find all the corners.
2. Find the distances between every pair

of corners.
3. Search that graph, using A*, to find

the best path.

*

*

Limitations

The limitation of a visibility graph: it only works if the obstacles are
polygons in C-space. If obstacles are arcs, they don’t have corners.

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Time scaling
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

• Model-based and model-free RL

C-Space Best-path algorithms

• A* on a rectangular grid
• Search nodes: squares on the grid

• A* on a visibility graph
• Search nodes: obstacle corners

• A* on a graph of rapid random trees (RRT)
• Search nodes: randomly sampled points

RRT

1. Generate a bunch of randomly
sampled points to serve as search
nodes

2. Eliminate the points that are inside
obstacles

3. Perform A* over the remaining points
to find the best path

4. Generate more samples in the vicinity
of best points

5. Repeat steps 2 through 4

*

*

x x

x x

x

xxx
x

xx

xx

x

x

xx

RRT

1. Generate a bunch of randomly
sampled points to serve as search
nodes

2. Eliminate the points that are inside
obstacles

3. Perform A* over the remaining points
to find the best path

4. Generate more samples in the vicinity
of best points

5. Repeat steps 2 through 4

*

*

x x

x

x

x

xx

x

x

xx

RRT

1. Generate a bunch of randomly
sampled points to serve as search
nodes

2. Eliminate the points that are inside
obstacles

3. Perform A* over the remaining points
to find the best path

4. Generate more samples in the vicinity
of best points

5. Repeat steps 2 through 4

*

*

x x

x

x

x

xx

x

x

xx

RRT

1. Generate a bunch of randomly
sampled points to serve as search
nodes

2. Eliminate the points that are inside
obstacles

3. Perform A* over the remaining points
to find the best path

4. Generate more samples in the vicinity
of best points

5. Repeat steps 2 through 4

*

*

x x x
x

x
x

xx

x

x
x

RRT

1. Generate a bunch of randomly
sampled points to serve as search
nodes

2. Eliminate the points that are inside
obstacles

3. Perform A* over the remaining points
to find the best path

4. Generate more samples in the vicinity
of best points

5. Repeat steps 2 through 4

*

*

x

x
x
x

x
x

x

x

x

xx

x

Key benefits of RRT

• Even with very limited computation (e.g., you can only afford one
iteration), you still get a path that solves the problem
• In the limit of infinite computation (infinite # iterations), you get the

best possible continuous-space path

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Time scaling
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

Trajectory control:
maximum torque

Now that you have an optimum path,
how fast should the robot travel along
that path?

Consideration #1: maximum torque.

Find 𝒒 𝑡 = 𝜃!(𝑡)
𝜃"(𝑡)

 so that
𝑑"𝜃!
𝑑𝑡"

≤ 𝑚𝑎𝑥!,
𝑑"𝜃"
𝑑𝑡"

≤ 𝑚𝑎𝑥"

*

*

Trajectory control:
maximum safe velocity

Consideration #2: maximum safe velocity.

Find 𝒒 𝑡 =
𝜃!(𝑡)
𝜃"(𝑡)

 so that

𝑑𝑤!
𝑑𝑡

"

+
𝑑𝑤"
𝑑𝑡

"

≤ 𝑣789

…where 𝒘 𝑡 is any solution to the
inverse kinematics:

𝒘 𝑡 ∈ 𝒘: ∃𝒃: 𝜑𝒃 𝒒 𝑡 = 𝒘(𝑡)

*

*

*

*

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Time scaling
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

Trajectory control: error
management!!!

Consideration #3: what do you do if you
start on a path but discover that your
motor is miscalibrated and you’re going
the wrong direction?

*

*

P-controller

A proportional controller (P-controller)
adds some extra torque in proportion to
the error:

𝑑"

𝑑𝑡"
𝜃!
𝜃"

= 𝐾 𝒒 𝑡 − 𝒓(𝑡)

*

*

𝑟 𝑡 𝑞 𝑡

P-controller Problems

A P-controller tends to result in oscillating
overshoot. *

*

PD-controller

A proportional-derivative controller (PD-
controller) adds some extra torque in
proportion to the error of the derivative:

𝑑"

𝑑𝑡"
𝜃!
𝜃"

= 𝐾: 𝒒 𝑡 − 𝑟(𝑡)
+𝐾; �̇� 𝑡 − �̇�(𝑡)

Doing this can smooth out the trajectory,
but can leave some long-term error

*

*

PID-controller
A proportional-integral-derivative controller
(PID-controller) adds some extra torque in
proportion to the error of the integral:

𝑑&

𝑑𝑡&
𝜃'
𝜃&

= 𝐾(𝒒 𝑡 − 𝒓(𝑡)

+𝐾)6
*

+
𝒒 𝜏 − 𝒓(𝜏) 𝑑𝜏

+𝐾, �̇� 𝑡 − �̇�(𝑡)

The P term fixes short-term errors.
The I term fixes long-term errors.
The D term smooths out oscillations.

*

*

Outline

• The robot path planning problem
• Workspace vs. Configuration space
• Path planning

• Visibility graph
• Rapid Random Trees (RRT)

• Trajectory control
• Time scaling
• Proportion-Integral-Derivative (PID) controller
• Model predictive control

What if your motors
behave randomly?
• What if your motors have some

randomness?
• Then you might not be able to plan an

exact trajectory.
• The best you can do is plan a trajectory

that goes in the right general direction.

*

*

Model predictive control

… means the following strategy.
1. Plan an optimum trajectory
2. Go partway
3. Observe where you are
4. Recalculate the optimal trajectory
5. Repeat

*

*

Summary

• The robot path planning problem
• Workspace (e.g., 𝒘 = [𝑥, 𝑦]<) vs. Configuration space (e.g., 𝒒	 =
[𝜃!, 𝜃"]<)
• Path planning

• Visibility graph: states=vertices in configuration space
• Rapid Random Trees (RRT): states=random, resampled near the best path

after every iteration
• Trajectory control

• Time scaling: Constraints on motor torque, workspace velocity
• Proportion-Integral-Derivative (PID) controller: Smooth out oscillations
• Model predictive control: Plan for the possibility of error

