

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Lecture 29: Transformers

Mark Hasegawa-Johnson

CCO Public Domain: Re-Use, Re-Mix, Re-distribute at will

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional embedding

Recurrent neural network

By fdeloche - Own work, CC BY-SA 4.0, <u>https://commons.wikimedia.org/w/index.php?curid=60109157</u>

- In a recurrent neural network (RNN), the hidden node activation vector, h_t , depends on the value of the same vector at time t 1.
- From 2014-2017, the best speech recognition and machine translation used RNNs.
- The input is x_t=speech or input-language text
- The output is o_t =text in the target language

Example: Part of speech tagging

- x_t =vector representation of the tth word, e.g., trained using CBOW
- h_t =hidden state vector = tanh($Ux_t + Vh_{t-1}$)
- $\boldsymbol{o}_t = \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_t) = [P(Y_t = \operatorname{Noun}|X_1, \dots, X_t), P(Y_t = \operatorname{Verb}|X_1, \dots, X_t), \dots]$

Training an RNN

An RNN is trained using gradient descent, just like any other neural network!

$$u_{j,i} \leftarrow u_{j,i} - \eta \frac{\partial \mathfrak{L}}{\partial u_{j,i}}$$
$$w_{j,k} \leftarrow w_{j,k} - \eta \frac{\partial \mathfrak{L}}{\partial w_{j,k}}$$

...where \mathfrak{L} is the loss function, and η is a step size.

Training an RNN: Infinite recursion?

The big difference is that now the loss function depends on U, V and W in many different ways:

- The loss function depends on each of the state vectors h_t , which depends directly on U and V.
- But *h_t* also depends on *h_{t-1}*, which, in turn, depends on *U* and *V*.
- ... and so on.

Back-propagation through time

The solution is something called back-propagation through time:

$$\frac{d\mathfrak{L}}{dh_{i,t}} = \frac{\partial\mathfrak{L}}{\partial h_{i,t}} + \sum_{j} \frac{d\mathfrak{L}}{dh_{j,t+1}} \frac{\partial h_{j,t+1}}{\partial h_{i,t}}$$

- The first term measures losses caused directly by $h_{i,t}$, for example, if $o_{i,t}$ is wrong.
- The second term measures losses caused indirectly, for example, because h_{i,t} caused h_{j,t+1} to be wrong.

Back-propagation through time

Notice that this is just like training a very deep network!

- Back-propagation through time: back-propagate from time step t + 1 to time step t
- Back-propagation in a very deep network: back-propagate from layer l + 1 to layer l

Toolkits like PyTorch may use the same code in both cases.

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional embedding

The Cocktail-Party Effect

- If you are focusing on one person's voice, but hear your name spoken by another person, your attention immediately shifts to the second voice.
- This "cocktail-party effect" suggests a model of hearing in which all sounds are processed preconsciously. Trigger sounds in an unattended source will cause attention to re-orient to that source.

https://commons.wikimedia.org/wiki/File:Cocktail party_attendees_at_Fuller_Lodge, 1946.jpg

https://commons.wikimedia.org/wiki/File:Cocktail-party_effect.svg

Bottom-up attention as a strategy for machine listening

- In 2014, researchers proposed that the past 200ms of RNN state vectors should be stored in a "short-term memory buffer"
- A speech recognizer can attend to several centiseconds, all at one time, to decide what words it thinks it is hearing

FDHC0 SX209: Michael colored the bedroom wall with cravons.

Chorowski, Bahdanau, Serdyk, Cho & Bengio, Attention-Based Models for Speech Recognition, Fig. 1

The Transformer: "Attention is all you need"

- In 2017, researchers proposed that the short-term memory buffer should contain raw signals, not processed signals.
- All processing is done using a model of bottom-up attention.

Attention: Key concepts

- The neural net needs to make a series of decision vectors, **o**_i
- Each decision needs to be based on some context vector, $m{c}_i$
- Each context vector is a weighted sum of input values, $c_i = \sum_t \alpha_{i,t} v_t$
- $\alpha_{i,t}$ is the amount of attention that the output decision o_i is paying to the input value v_t . It is based on the similarity between a key vector, k_t , that describes the type of information available in v_t , and a query vector, q_i , that describes the type of information necessary in order to make the output decision

Inputs to an attention network

- Neural net inputs: a sequence of row vectors, x_t
- Neural net outputs: a sequence of row vectors, \boldsymbol{o}_i
- Value: What type of information should x_t provide to the output? This may be just a linear transform of x_t , e.g.: $v_t = W_V x_t$
- Query: What type of information does o_i need? This may be just a linear transform of o_{i-1} , e.g.: $q_i = W_Q o_{i-1}$
- Key: The dot product $\boldsymbol{q}_i^T \boldsymbol{k}_t$ should be positive if \boldsymbol{v}_t is useful, and negative if \boldsymbol{v}_t is useless. This may be $\boldsymbol{k}_t = \boldsymbol{W}_K \boldsymbol{x}_t$

Attention = a probability mass over time

- Attention is like probability: You only have a fixed amount of attention, so you need to decide how to distribute it.
- $\alpha_{i,t} = P(v_t|q_i)$ = the probability that v_t is the context that you need in order to make a decision related to the query vector q_i .

$$\sum_t \alpha_{i,t} = 1$$

• Each output context vector (c_i) is based on some input value vectors (v_t) . But which ones? Answer: decide which inputs to pay attention to, then pay attention.

$$\boldsymbol{c}_i = \sum_t \alpha_{i,t} \boldsymbol{v}_t$$

Dot-product attention

How can you decide which value vectors, v_t are most relevant to a particular query? Answer:

- 1. Create a key vector, \boldsymbol{k}_t , such that $\boldsymbol{q}_i^T \boldsymbol{k}_t > 0$ if v_t is relevant to \boldsymbol{q}_i , otherwise $\boldsymbol{q}_i^T \boldsymbol{k}_t < 0$.
- 2. Convert the similarity measures into a probability distribution using softmax:

By BenFrantzDale at the English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=49972362

$$\alpha_{i,t} = \frac{\exp(\boldsymbol{q}_i^T \boldsymbol{k}_t)}{\sum_{\tau} \exp(\boldsymbol{q}_i^T \boldsymbol{k}_{\tau})}$$

Putting it all together

• Stack up v_t , k_t , and q_i into matrices:

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1^T \\ \vdots \\ \boldsymbol{v}_n^T \end{bmatrix}, \boldsymbol{K} = \begin{bmatrix} \boldsymbol{k}_1^T \\ \vdots \\ \boldsymbol{k}_n^T \end{bmatrix}, \boldsymbol{Q} = \begin{bmatrix} \boldsymbol{q}_1^T \\ \vdots \\ \boldsymbol{q}_m^T \end{bmatrix}$$

- $\alpha_{i,t}$ is the tth output of a softmax whose input vector is Kq_i : $\alpha_{i,t} = \operatorname{softmax}_t(Kq_i) = \frac{\exp(q_i^T k_t)}{\sum_{\tau} \exp(q_i^T k_{\tau})}$
- c_i is the product of the vector softmax(Kq_i) times the V^T matrix:

$$\boldsymbol{c}_i = \boldsymbol{V}^T \operatorname{softmax}(\boldsymbol{K} \boldsymbol{q}_i) = \sum_t \alpha_{i,t} \, \boldsymbol{v}_t$$

Quiz!

Try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/24 12318

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional embedding

Self-attention

Self-attention (literally!) adds context to each input vector:

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

(shifted right)

Output Probabilities Softmax

Linear

Multi-headed-attention

Multi-headed-attention uses 8 different w_Q , w_K , and w_V matrices, in order to get 8 different views of the input data:

 $q_{j,i} = W_{j,Q} x_{j,i}, \qquad 1 \le j \le 8$ $k_{j,t} = W_{j,K} x_{j,t}, \qquad 1 \le j \le 8$ $v_{j,t} = W_{j,V} x_{j,t}, \qquad 1 \le j \le 8$ $h_{j,i} = V_j^T \operatorname{softmax} (K_j q_{j,i})$ $c_i = W_{j,0} \begin{bmatrix} h_{1,i} \\ \vdots \\ h_{8,i} \end{bmatrix}$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Cross-attention

Cross-attention: query depends on preceding output, key and value depend on input:

$$q_{j,i} = W_{j,Q} o_{j,i-1}$$
$$k_{j,t} = W_{j,K} x_{j,t}$$
$$v_{j,t} = W_{j,V} x_{j,t}$$
$$h_{j,i} = V_j^T \operatorname{softmax}(K_j q_{j,i})$$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Masked attention

Masked attention forces c_i to pay attention to value vectors v_t only if t < i:

$$s(\boldsymbol{q}_{i}, \boldsymbol{k}_{t}) = \begin{cases} \boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t} & t < i \\ -\infty & t \ge i \end{cases}$$
$$\alpha_{i,t} = \frac{\exp(s(\boldsymbol{q}_{i}, \boldsymbol{k}_{t}))}{\sum_{\tau} \exp(s(\boldsymbol{q}_{i}, \boldsymbol{k}_{\tau}))}$$
$$= \begin{cases} \operatorname{softmax}(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}) & t < i \\ 0 & t \ge i \end{cases}$$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Cross-attention visualization

This plot shows $\alpha_{i,t}$ where i = output character, and t = input spectrum

FDHC0 SX209: Michael colored the bedroom wall with crayons.

Chorowski, Bahdanau, Serdyk, Cho & Bengio, Attention-Based Models for Speech Recognition, Fig. 1

Word Error Rates using Transformers

By 9/2020, transformers had error rates of:

- 2%: English, quiet recording conditions
- 4%: Chinese or Japanese, quiet recording conditions
- 5-7%: if the reference transcript has errors
- 14%: 2-talker mixtures, synthetic reverberation
- 38%: actual in-home recordings in noisy households

Dataset	Vocab	Metric	Evaluation Sets	Transformer	Conformer
AIDATATANG	Char	CER	dev / test	(†) 5.9 / 6.7	4.3 / 5.0
AISHELL-1	Char	CER	dev / test	(†) 6.0 / 6.7	(*) 4.4 / 4.7
AISHELL-2	Char	CER	android / ios / mic	(†) 8.9 / 7.5 / 8.6	7.6 / 6.8 / 7.4
AURORA4	Char	WER	dev_0330 (A / B / C / D)	3.3 / 6.0 / 4.5 / 10.6	4.3 / 6.0 / 5.4 / 9.3
CSJ	Char	CER	eval{1, 2, 3}	(*) 4.7 / 3.7 / 3.9	(*) 4.5 / 3.3 / 3.6
CHiME4	Char	WER	$dt05, et05$ _ $simu, real$	(†) 9.6 / 8.2 / 15.7 / 14.5	9.1 / 7.9 / 14.2 / 13.4
Fisher-CallHome	BPE	WER	dev / dev2 / test / devtest / evltest	22.1 / 21.5 / 19.9 / 38.1 / 38.2	21.5 / 21.1 / 19.4 / 37.4 / 37.5
HKUST	Char	CER	dev	(†) 23.5	(†) 22.2
JSUT	Char	CER	our split	(†) 18.7	14.5
LibriSpeech	BPE	WER	$\{dev, test\}_{clean, other}$	2.1 / 5.3 / 2.5 / 5.5	1.9 / 4.9 / 2.1 / 4.9
REVERB	Char	WER	et_{near, far}	(†) 13.1 / 15.4	(†) 10.5 / 13.9
Switchboard	BPE	WER	eval2000 (callhm / swbd)	17.2 / 8.2	14.0 / 6.8
TEDLIUM2	BPE	WER	dev / test	9.3 / 8.1	8.6 / 7.2
TEDLIUM3	BPE	WER	dev / test	10.8 / 8.4	9.6 / 7.6
VoxForge	Char	CER	our split	(§) 9.4 / 9.1	(§) 8.7 / 8.2
WSJ	BPE	WER	dev93/ eval92	(‡) 7.4 / 4.9	(‡) 7.7 / 5.3
WSJ-2mix	Char	WER	tt	(§) 12.6	(§) 11.7

 Table 1. CER/WER results on various open source ASR corpora. Both Transformer and Conformer models are implemented based on ESPnet toolkit. * marks ESPnet2 results. † and ‡ indicate only w/ speed or only w/ SpecAugment, respectively. § denotes w/o any data augmentation.

Guo, Boyer, Chang, Hayashi, Higuchi et al., ICASSP 2021, © IEEE

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional Encoding

What we have lost...

• With the recurrent neural net, each state vector paid attention to the one that preceded it:

$$\boldsymbol{h}_t = \tanh(\boldsymbol{U}\boldsymbol{v}_t + \boldsymbol{V}\boldsymbol{h}_{t-1})$$

• With a transformer, each state vector pays attention to the input that is most similar, regardless of what time it happened:

$$\boldsymbol{h}_{i} = \sum_{t} \alpha_{i,t} \, \boldsymbol{\nu}_{t}, \qquad \alpha_{i,t} = \frac{\exp(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t})}{\sum_{\tau} \exp(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{\tau})}$$

• What if we always want h_t to pay special attention to v_{t-1} ? Is that possible?

Position encoding by Fourier basis

The solution is to encode the relative position of each input, v_t , using a Fourier basis e_t :

$$\boldsymbol{e}_{t} = \begin{bmatrix} \cos\left(\frac{\pi t}{T}\right) \\ \sin\left(\frac{\pi t}{T}\right) \\ \vdots \\ \cos\left(\frac{\pi Dt}{2T}\right) \\ \sin\left(\frac{\pi Dt}{2T}\right) \end{bmatrix}$$

Public domain image,

https://commons.wikimedia.org/wiki/File:An elementary treatise on Fourier%27s series an d spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in math ematical physics (1893) (14780364665).jpg

Position encoding by Fourier basis

The Fourier basis is useful because shifting by a fixed time offset, to t - d, can be accomplished by a matrix multiplication:

$$\boldsymbol{e}_{t-d} = \begin{bmatrix} \cos\left(\frac{\pi d}{T}\right) & \sin\left(\frac{\pi d}{T}\right) & \cdots \\ -\sin\left(\frac{\pi d}{T}\right) & \cos\left(\frac{\pi d}{T}\right) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \boldsymbol{e}_t$$

...so if we want a particular query to pay attention to vectors with a time delay of d, we just set $W_{j,Q}$ to the matrix shown above.

https://commons.wikimedia.org/wiki/File:Exponentials of complex number within unit circl e-2.svg

Where do we put the positional encoding?

- Possibility #1: Concatenate it, i.e., $\boldsymbol{x}_t^T = [\boldsymbol{x}_t^T, \boldsymbol{e}_t^T]$
 - Advantage: $W_{j,Q}$ can learn to operate separately on the content x_t^T and the positional encoding e_t^T
 - Disadvantage: every vector is twice as large, and every matrix is four times as large
- Possibility #2: Add it, i.e., $x_t = x_t + e_t$
 - Advantage: fewer parameters to learn
 - Disadvantage: $W_{j,Q}$ can only operate directly on e_t if x_t is mostly zero
 - Surprise: this works well in practice. Apparently, the positional encoding can learn to ignore local fluctuations in x_t , and pretend that it's mostly 0 on average

Positional encoding

In the standard transformer, position of the input is encoded using

Output Probabilities Softmax

Linear Add&Norm

Summary

• Recurrent neural networks

$$\boldsymbol{h}_t = anh(\boldsymbol{U}\boldsymbol{v}_t + \boldsymbol{V}\boldsymbol{h}_{t-1})$$

• Attention

$$\boldsymbol{c}_{i} = \boldsymbol{V}^{T} \operatorname{softmax}(\boldsymbol{K}\boldsymbol{q}_{i}) = \sum_{t} \frac{\exp(\boldsymbol{q}_{i}^{T}\boldsymbol{k}_{t})}{\sum_{\tau} \exp(\boldsymbol{q}_{i}^{T}\boldsymbol{k}_{\tau})} \boldsymbol{v}_{t}$$

- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional encoding

$$\boldsymbol{x}_{t} \mathrel{+}= \begin{bmatrix} \cos\left(\frac{\pi t}{T}\right) \\ \sin\left(\frac{\pi t}{T}\right) \\ \vdots \end{bmatrix}$$