Lecture 29: Transformers

Mark Hasegawa-Johnson
4/2024
CCO Public Domain: Re-Use, ReMix, Re-distribute at will

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional embedding

Recurrent neural network

- In a recurrent neural network (RNN), the hidden node activation vector, h_{t}, depends on the value of the same vector at time $t-1$.
- From 2014-2017, the best speech recognition and machine translation used RNNs.
- The input is $x_{t}=$ speech or input-language text
- The output is $o_{t}=$ text in the target language

Example: Part of speech tagging

- $\boldsymbol{x}_{t}=$ vector representation of the $\mathrm{t}^{\text {th }}$ word, e.g., trained using CBOW
- $\boldsymbol{h}_{t}=$ hidden state vector $=\tanh \left(\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{V} \boldsymbol{h}_{t-1}\right)$
- $\boldsymbol{o}_{t}=\operatorname{softmax}\left(\boldsymbol{W} \boldsymbol{h}_{t}\right)=\left[P\left(Y_{t}=\operatorname{Noun} \mid X_{1}, \ldots, X_{t}\right), P\left(Y_{t}=\operatorname{Verb} \mid X_{1}, \ldots, X_{t}\right), \ldots\right]$

Training an RNN

An RNN is trained using gradient descent, just like any other neural network!

$$
\begin{aligned}
u_{j, i} & \leftarrow u_{j, i}-\eta \frac{\partial \mathfrak{Q}}{\partial u_{j, i}} \\
w_{j, k} & \leftarrow w_{j, k}-\eta \frac{\partial \mathfrak{R}}{\partial w_{j, k}}
\end{aligned}
$$

... where \mathfrak{L} is the loss function, and η is a step size.

Training an RNN: Infinite recursion?

The big difference is that now the loss function depends on \boldsymbol{U}, V and \boldsymbol{W} in many different ways:

- The loss function depends on each of the state vectors \boldsymbol{h}_{t}, which depends directly on \boldsymbol{U} and \boldsymbol{V}.
- But \boldsymbol{h}_{t} also depends on \boldsymbol{h}_{t-1}, which, in turn, depends on \boldsymbol{U} and V.

- ... and so on.

Back-propagation through time

The solution is something called back-propagation through time:

$$
\frac{d \mathfrak{Q}}{d h_{i, t}}=\frac{\partial \mathfrak{R}}{\partial h_{i, t}}+\sum_{j} \frac{d \mathfrak{Q}}{d h_{j, t+1}} \frac{\partial h_{j, t+1}}{\partial h_{i, t}}
$$

- The first term measures losses caused directly by $h_{i, t}$, for
 example, if $o_{i, t}$ is wrong.
- The second term measures losses caused indirectly, for example, because $h_{i, t}$ caused $h_{j, t+1}$ to be wrong.

Back-propagation through time

Notice that this is just like training a very deep network!

- Back-propagation through time: back-propagate from time step $t+1$ to time step t
- Back-propagation in a very deep network: back-propagate from layer $l+1$ to layer l

Toolkits like PyTorch may use the same code in both cases.

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional embedding

The Cocktail-Party Effect

- If you are focusing on one person's voice, but hear your name spoken by another person, your attention immediately shifts to the second voice.
- This "cocktail-party effect" suggests a model of hearing in which all sounds are processed preconsciously. Trigger sounds in an unattended source will cause attention to re-orient to that source.

Bottom-up attention as a strategy for machine listening

- In 2014, researchers proposed that the past 200 ms of RNN state vectors should be stored in a "short-term memory buffer"
- A speech recognizer can attend to several centiseconds, all at one time, to decide what words it thinks it is hearing

FDHC0_SX209: Michael colored the bedroom wall with crayons.

Chorowski, Bahdanau, Serdyk, Cho \& Bengio, Attention-Based Models for Speech Recognition, Fig. 1

The Transformer: "Attention is all you need"

- In 2017, researchers proposed that the short-term memory buffer should contain raw signals, not processed signals.
- All processing is done using a model of bottom-up attention.

Attention: Key concepts

- The neural net needs to make a series of decision vectors, \boldsymbol{o}_{i}
- Each decision needs to be based on some context vector, \boldsymbol{c}_{i}
- Each context vector is a weighted sum of input values, $\boldsymbol{c}_{i}=\sum_{t} \alpha_{i, t} \boldsymbol{v}_{t}$
- $\alpha_{i, t}$ is the amount of attention that the output decision \boldsymbol{o}_{i} is paying to the input value \boldsymbol{v}_{t}. It is based on the similarity between a key vector, \boldsymbol{k}_{t}, that describes the type of information available in \boldsymbol{v}_{t}, and a query vector, \boldsymbol{q}_{i}, that describes the type of information necessary in order to make the output decision

Inputs to an attention network

- Neural net inputs: a sequence of row vectors, \boldsymbol{x}_{t}
- Neural net outputs: a sequence of row vectors, \boldsymbol{o}_{i}
- Value: What type of information should x_{t} provide to the output? This may be just a linear transform of \boldsymbol{x}_{t}, e.g.: $\boldsymbol{v}_{t}=\boldsymbol{W}_{V} \boldsymbol{x}_{t}$
- Query: What type of information does o_{i} need? This may be just a linear transform of \boldsymbol{o}_{i-1}, e.g.: $\boldsymbol{q}_{i}=\boldsymbol{W}_{Q} \boldsymbol{o}_{i-1}$
- Key: The dot product $\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}$ should be positive if \boldsymbol{v}_{t} is useful, and negative if \boldsymbol{v}_{t} is useless. This may be $\boldsymbol{k}_{t}=\boldsymbol{W}_{K} \boldsymbol{x}_{t}$

Attention = a probability mass over time

- Attention is like probability: You only have a fixed amount of attention, so you need to decide how to distribute it.
- $\alpha_{i, t}=P\left(\boldsymbol{v}_{t} \mid q_{i}\right)=$ the probability that \boldsymbol{v}_{t} is the context that you need in order to make a decision related to the query vector \boldsymbol{q}_{i}.

$$
\sum_{t} \alpha_{i, t}=1
$$

- Each output context vector $\left(\boldsymbol{c}_{i}\right)$ is based on some input value vectors $\left(\boldsymbol{v}_{t}\right)$. But which ones? Answer: decide which inputs to pay attention to, then pay attention.

$$
\boldsymbol{c}_{i}=\sum_{t} \alpha_{i, t} \boldsymbol{v}_{t}
$$

Dot-product attention

How can you decide which value vectors, v_{t} are most relevant to a particular query? Answer:

1. Create a key vector, \boldsymbol{k}_{t}, such that $\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}>0$ if v_{t} is relevant to \boldsymbol{q}_{i}, otherwise $\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}<0$.
2. Convert the similarity measures into a probability distribution using softmax:

By BenFrantzDale at the English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=49972362

$$
\alpha_{i, t}=\frac{\exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}\right)}{\sum_{\tau} \exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{\tau}\right)}
$$

Putting it all together

- Stack up $\boldsymbol{v}_{t}, \boldsymbol{k}_{t}$, and \boldsymbol{q}_{i} into matrices:

$$
\boldsymbol{V}=\left[\begin{array}{c}
\boldsymbol{v}_{1}^{T} \\
\vdots \\
\boldsymbol{v}_{n}^{T}
\end{array}\right], \boldsymbol{K}=\left[\begin{array}{c}
\boldsymbol{k}_{1}^{T} \\
\vdots \\
\boldsymbol{k}_{n}^{T}
\end{array}\right], \boldsymbol{Q}=\left[\begin{array}{c}
\boldsymbol{q}_{1}^{T} \\
\vdots \\
\boldsymbol{q}_{m}^{T}
\end{array}\right]
$$

- $\alpha_{i, t}$ is the $\mathrm{t}^{\text {th }}$ output of a softmax whose input vector is $\boldsymbol{K} \boldsymbol{q}_{i}$:

$$
\alpha_{i, t}=\operatorname{softmax}_{t}\left(\boldsymbol{K} \boldsymbol{q}_{i}\right)=\frac{\exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}\right)}{\sum_{\tau} \exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{\tau}\right)}
$$

- c_{i} is the product of the vector softmax $\left(\boldsymbol{K}_{\boldsymbol{q}}\right)$ times the $\boldsymbol{V}^{\boldsymbol{T}}$ matrix:

$$
\boldsymbol{c}_{i}=\boldsymbol{V}^{\boldsymbol{T}} \operatorname{softmax}\left(\boldsymbol{K} \boldsymbol{q}_{i}\right)=\sum_{t} \alpha_{i, t} \boldsymbol{v}_{t}
$$

Quiz!

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/24 12318

Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional embedding

Self-attention

Self-attention (literally!) adds context to each input vector:

$$
\begin{gathered}
\boldsymbol{q}_{i}=\boldsymbol{W}_{Q} \boldsymbol{x}_{\boldsymbol{i}} \\
\boldsymbol{k}_{t}=\boldsymbol{W}_{K} \boldsymbol{x}_{t} \\
\boldsymbol{v}_{t}=\boldsymbol{W}_{V} \boldsymbol{x}_{t} \\
\boldsymbol{c}_{i}=\boldsymbol{V}^{\boldsymbol{T}} \operatorname{softmax}\left(\boldsymbol{K} \boldsymbol{q}_{i}\right) \\
y_{i}=\frac{\boldsymbol{x}_{i}+\boldsymbol{c}_{i}-E\left[\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{c}_{i}\right]}{\sqrt{\operatorname{Var}\left(\boldsymbol{x}_{i}+\boldsymbol{c}_{i}\right)}}
\end{gathered}
$$

Positional Encoding

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Multi-headed-attention

Multi-headed-attention uses 8 different w_{Q}, w_{K}, and w_{V} matrices, in order to get 8 different views of the input data:

$$
\begin{aligned}
& \boldsymbol{q}_{j, i}=\boldsymbol{W}_{j, Q} \boldsymbol{x}_{j, i}, \quad 1 \leq j \leq 8 \\
& \boldsymbol{k}_{j, t}=\boldsymbol{W}_{j, K} \boldsymbol{x}_{j, t}, \quad 1 \leq j \leq 8 \\
& \boldsymbol{v}_{j, t}=\boldsymbol{W}_{j, V} \boldsymbol{x}_{j, t}, \quad 1 \leq j \leq 8 \\
& \boldsymbol{h}_{j, i}=\boldsymbol{V}_{j}^{T} \operatorname{softmax}\left(\boldsymbol{K}_{j} \boldsymbol{q}_{j, i}\right) \\
& \boldsymbol{c}_{i}=\boldsymbol{W}_{j, O}\left[\begin{array}{c}
\boldsymbol{h}_{1, i} \\
\vdots \\
\boldsymbol{h}_{8, i}
\end{array}\right]
\end{aligned}
$$

Multi-Head Attention

Cross-attention

Cross-attention: query depends on preceding output, key and value depend on input:

$$
\begin{gathered}
\boldsymbol{q}_{j, i}=\boldsymbol{W}_{j, Q} \boldsymbol{o}_{j, i-1} \\
\boldsymbol{k}_{j, t}=\boldsymbol{W}_{j, K} \boldsymbol{x}_{j, t} \\
\boldsymbol{v}_{j, t}=\boldsymbol{W}_{j, V} \boldsymbol{x}_{j, t} \\
\boldsymbol{h}_{j, i}=\boldsymbol{V}_{j}^{T} \operatorname{softmax}\left(\boldsymbol{K}_{j} \boldsymbol{q}_{j, i}\right)
\end{gathered}
$$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Masked attention

Masked attention forces c_{i} to pay attention to value vectors v_{t} only if $t<$ i :

$$
\begin{aligned}
& s\left(\boldsymbol{q}_{i}, \boldsymbol{k}_{t}\right)=\left\{\begin{array}{cc}
\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t} & t<i \\
-\infty & t \geq i
\end{array}\right. \\
& \alpha_{i, t}=\frac{\exp \left(s\left(\boldsymbol{q}_{i}, \boldsymbol{k}_{t}\right)\right)}{\sum_{\tau} \exp \left(s\left(\boldsymbol{q}_{i}, \boldsymbol{k}_{\tau}\right)\right)} \\
& =\left\{\begin{array}{cc}
\operatorname{softmax}\left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}\right) & t<i \\
0 & t \geq i
\end{array}\right.
\end{aligned}
$$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Cross-attention visualization

This plot shows $\alpha_{i, t}$ where $i=$ output character, and $t=$ input spectrum

FDHC0_SX209: Michael colored the bedroom wall with crayons.

Chorowski, Bahdanau, Serdyk, Cho \& Bengio, Attention-Based Models for Speech Recognition, Fig. 1

Word Error Rates using Transformers

By 9/2020, transformers had error rates of:

- 2\%: English, quiet recording conditions
- 4\%: Chinese or Japanese, quiet recording conditions
- 5-7\%: if the reference transcript has errors
- 14\%: 2-talker mixtures, synthetic reverberation
- 38\%: actual in-home recordings in noisy households

Table 1. CER/WER results on various open source ASR corpora. Both Transformer and Conformer models are implemented based on ESPnet toolkit. $*$ marks ESPnet2 results. \dagger and \ddagger indicate only w/ speed or only w/ SpecAugment, respectively. \S denotes w/o any data augmentation.

Dataset	Vocab	Metric	Evaluation Sets	Transformer	Conformer
AIDATATANG	Char	CER	dev / test	(\dagger) $5.9 / 6.7$	4.3 / 5.0
AISHELL-1	Char	CER	dev / test	(\dagger) $6.0 / 6.7$	(*) 4.4 / 4.7
AISHELL-2	Char	CER	android / ios / mic	(\dagger) $8.9 / 7.5 / 8.6$	7.6 / 6.8 / 7.4
AURORA4	Char	WER	dev_0330 (A / B / C / D)	3.3 / 6.0 / 4.5 / 10.6	4.3 / $6.0 / 5.4 / 9.3$
CSJ	Char	CER	eval $\{1,2,3\}$	(*) $4.7 / 3.7 / 3.9$	(*) $4.5 / 3.3 / 3.6$
CHiME4	Char	WER	\{dt05, et05\}-\{simu, real\}	(\dagger) $9.6 / 8.2 / 15.7 / 14.5$	9.1 / 7.9 / 14.2 / 13.4
Fisher-CallHome	BPE	WER	dev / dev2 / test / devtest / evltest	$22.1 / 21.5$ / 19.9 / $38.1 / 38.2$	21.5 / 21.1 / 19.4 / 37.4 / 37.5
HKUST	Char	CER	dev	(\dagger) 23.5	($\dagger 22.2$
JSUT	Char	CER	our split	(\dagger) 18.7	14.5
LibriSpeech	BPE	WER	\{dev, test ${ }_{\text {_ }}$ \{clean, other $\}$	$2.1 / 5.3 / 2.5 / 5.5$	1.9 / 4.9 / 2.1 / 4.9
REVERB	Char	WER	et_\{near, far\}	$(\dagger) 13.1 / 15.4$	(\dagger) $10.5 / 13.9$
Switchboard	BPE	WER	eval2000 (callhm / swbd)	17.2 / 8.2	14.0 / 6.8
TEDLIUM2	BPE	WER	$\mathrm{dev} /$ test	9.3 / 8.1	8.6 / 7.2
TEDLIUM3	BPE	WER	dev / test	10.8 / 8.4	9.6 / 7.6
VoxForge	Char	CER	our split	(§) $9.4 / 9.1$	(§) 8.7 / 8.2
WSJ	BPE	WER	dev93/ eval92	(\ddagger) 7.4 / 4.9	(\ddagger) $7.7 / 5.3$
WSJ-2mix	Char	WER	tt	(§) 12.6	(§) 11.7

[^0]
Outline

- Recurrent neural networks
- Attention
- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional Encoding

What we have lost...

- With the recurrent neural net, each state vector paid attention to the one that preceded it:

$$
\boldsymbol{h}_{t}=\tanh \left(\boldsymbol{U} \boldsymbol{v}_{t}+\boldsymbol{V} \boldsymbol{h}_{t-1}\right)
$$

- With a transformer, each state vector pays attention to the input that is most similar, regardless of what time it happened:

$$
\boldsymbol{h}_{i}=\sum_{t} \alpha_{i, t} \boldsymbol{v}_{t}, \quad \alpha_{i, t}=\frac{\exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}\right)}{\sum_{\tau} \exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{\tau}\right)}
$$

- What if we always want \boldsymbol{h}_{t} to pay special attention to \boldsymbol{v}_{t-1} ? Is that possible?

Position encoding by Fourier basis

The solution is to encode the relative position of each input, \boldsymbol{v}_{t}, using a Fourier basis \boldsymbol{e}_{t} :

$$
\boldsymbol{e}_{t}=\left[\begin{array}{c}
\cos \left(\frac{\pi t}{T}\right) \\
\sin \left(\frac{\pi t}{T}\right) \\
\vdots \\
\cos \left(\frac{\pi D t}{2 T}\right) \\
\sin \left(\frac{\pi D t}{2 T}\right)
\end{array}\right]
$$

Public domain image,
https://commons.wikimedia.org/wiki/File:An elementary treatise on Fourier\%27s series an d spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in math ematical physics (1893) (14780364665).jpg

Position encoding by Fourier basis

The Fourier basis is useful because shifting by a fixed time offset, to $t-d$, can be accomplished by a matrix multiplication:

$$
\boldsymbol{e}_{t-d}=\left[\begin{array}{ccc}
\cos \left(\frac{\pi d}{T}\right) & \sin \left(\frac{\pi d}{T}\right) & \cdots \\
-\sin \left(\frac{\pi d}{T}\right) & \cos \left(\frac{\pi d}{T}\right) & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] \boldsymbol{e}_{t}
$$

...so if we want a particular query to pay attention to vectors with a time delay of d, we just set $\boldsymbol{W}_{j, Q}$ to the matrix shown

Public domain image,
https://commons.wikimedia.org/wiki/File:Exponentials of complex number within unit circl
e-2.svg

Where do we put the positional encoding?

- Possibility \#1: Concatenate it, i.e., $\boldsymbol{x}_{t}^{T}=\left[\boldsymbol{x}_{t}^{T}, \boldsymbol{e}_{t}^{T}\right]$
- Advantage: $\boldsymbol{W}_{j, Q}$ can learn to operate separately on the content \boldsymbol{x}_{t}^{T} and the positional encoding \boldsymbol{e}_{t}^{T}
- Disadvantage: every vector is twice as large, and every matrix is four times as large
- Possibility \#2: Add it, i.e., $\boldsymbol{x}_{t}=\boldsymbol{x}_{t}+\boldsymbol{e}_{t}$
- Advantage: fewer parameters to learn
- Disadvantage: $\boldsymbol{W}_{j, Q}$ can only operate directly on \boldsymbol{e}_{t} if \boldsymbol{x}_{t} is mostly zero
- Surprise: this works well in practice. Apparently, the positional encoding can learn to ignore local fluctuations in \boldsymbol{x}_{t}, and pretend that it's mostly 0 on average

Positional encoding

In the standard transformer, position of the input is encoded using

$$
\boldsymbol{x}_{t}=\boldsymbol{x}_{t}+\left[\begin{array}{c}
\cos \left(\frac{\pi t}{T}\right) \\
\sin \left(\frac{\pi t}{T}\right) \\
\vdots \\
\cos \left(\frac{\pi D t}{2 T}\right) \\
\sin \left(\frac{\pi D t}{2 T}\right)
\end{array}\right]
$$

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121340680

Summary

- Recurrent neural networks

$$
\boldsymbol{h}_{t}=\tanh \left(\boldsymbol{U} \boldsymbol{v}_{t}+\boldsymbol{V} \boldsymbol{h}_{t-1}\right)
$$

- Attention

$$
\boldsymbol{c}_{i}=\boldsymbol{V}^{\boldsymbol{T}} \operatorname{softmax}\left(\boldsymbol{K} \boldsymbol{q}_{i}\right)=\sum_{t} \frac{\exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{t}\right)}{\sum_{\tau} \exp \left(\boldsymbol{q}_{i}^{T} \boldsymbol{k}_{\tau}\right)} \boldsymbol{v}_{t}
$$

- Self-attention, Multi-headed attention, Cross-attention, and Masked attention
- Positional encoding

$$
\boldsymbol{x}_{t}+=\left[\begin{array}{c}
\cos \left(\frac{\pi t}{T}\right) \\
\sin \left(\frac{\pi t}{T}\right) \\
\vdots
\end{array}\right]
$$

[^0]: Guo, Boyer, Chang, Hayashi, Higuchi et al., ICASSP 2021, © IEEE

