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Recurrent neural network
• In a recurrent neural 

network (RNN), the 
hidden node activation 
vector, ℎ!, depends on 
the value of the same 
vector at time 𝑡 − 1.  

• From 2014-2017, the 
best speech 
recognition and 
machine translation 
used RNNs. 

• The input is 𝑥!=speech 
or input-language text

• The output is 𝑜!=text 
in the target language

By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157

Graves et al., 2006, Figure 1. (c) ICML

https://commons.wikimedia.org/w/index.php?curid=60109157
https://dl.acm.org/doi/abs/10.1145/1143844.1143891


Example: Part of 
speech tagging

• 𝒙! =vector representation of the tth word, e.g., trained using CBOW
• 𝒉! =hidden state vector = tanh 𝑼𝒙! + 𝑽𝒉!"#
• 𝒐! = softmax 𝑾𝒉! = 𝑃 𝑌! = Noun|𝑋#, … , 𝑋! , 𝑃 𝑌! = Verb|𝑋#, … , 𝑋! , …

ℎ!"# ℎ! ℎ!$#

𝑥!"# 𝑥! 𝑥!$#

⋯ ⋯

𝑜!"# 𝑜! 𝑜!$#



Training an RNN

An RNN is trained using gradient descent, just like any other neural network!

𝑢%,' ← 𝑢%,' − 𝜂
𝜕𝔏
𝜕𝑢%,'

𝑤%,( ← 𝑤%,( − 𝜂
𝜕𝔏
𝜕𝑤%,(

…where 𝔏 is the loss function, and 𝜂 is a step size.

ℎ!"# ℎ! ℎ!$#

𝑥!"# 𝑥! 𝑥!$#

⋯ ⋯

𝑜!"# 𝑜! 𝑜!$#



Training an RNN: Infinite recursion?
The big difference is that now the 
loss function depends on 𝑼, 𝑉 and 
𝑾 in many different ways:
• The loss function depends on each 

of the state vectors 𝒉!, which 
depends directly on 𝑼 and 𝑽.

• But 𝒉!	also depends on 𝒉!"#, 
which, in turn, depends on 𝑼 and 
𝑽.

• … and so on.

𝔏

ℎ!"# ℎ! ℎ!$#

𝑥!"# 𝑥! 𝑥!$#

⋯ ⋯

𝑜!"# 𝑜! 𝑜!$#

𝑢 𝑢 𝑢

𝑣𝑣𝑣
𝑤 𝑤 𝑤



Back-propagation through time
The solution is something called 
back-propagation through time:

𝑑𝔏
𝑑ℎ',!

=
𝜕𝔏
𝜕ℎ',!

+N
%

𝑑𝔏
𝑑ℎ%,!$#

𝜕ℎ%,!$#
𝜕ℎ',!

• The first term measures losses 
caused directly by ℎ',!,  for 
example, if 𝑜',! is wrong.

• The second term measures losses 
caused indirectly, for example, 
because ℎ',! caused ℎ%,!$# to be 
wrong. 

𝔏

ℎ!"# ℎ! ℎ!$#

𝑥!"# 𝑥! 𝑥!$#

⋯ ⋯

𝑜!"# 𝑜! 𝑜!$#

𝑢 𝑢 𝑢

𝑣𝑣𝑣
𝑤 𝑤 𝑤



Back-propagation through time
Notice that this is just like training a 
very deep network!
• Back-propagation through time: 

back-propagate from time step 𝑡 + 1 
to time step 𝑡

• Back-propagation in a very deep 
network: back-propagate from layer 
𝑙 + 1 to layer 𝑙

Toolkits like PyTorch may use the same 
code in both cases.

𝔏

ℎ!"# ℎ! ℎ!$#

𝑥!"# 𝑥! 𝑥!$#

⋯ ⋯
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The Cocktail-Party Effect

• If you are focusing on one person’s 
voice, but hear your name spoken by 
another person, your attention 
immediately shifts to the second 
voice.
• This “cocktail-party effect” suggests a 

model of hearing in which all sounds 
are processed preconsciously.  Trigger 
sounds in an unattended source will 
cause attention to re-orient to that 
source. 

https://commons.wikimedia.o
rg/wiki/File:Cocktail_Party_At
_The_Imperial_Hotel_March_
13,_1961_(Tokyo,_Japan)_(49
6610682).jpg

https://commons.wikimedia.org/wiki/File:Cocktail
_party_attendees_at_Fuller_Lodge,_1946.jpg

https://commons.wikimedia.org/wiki/File:Cocktail-party_effect.svg

https://commons.wikimedia.org/wiki/File:Cocktail_Party_At_The_Imperial_Hotel_March_13,_1961_(Tokyo,_Japan)_(496610682).jpg
https://commons.wikimedia.org/wiki/File:Cocktail_Party_At_The_Imperial_Hotel_March_13,_1961_(Tokyo,_Japan)_(496610682).jpg
https://commons.wikimedia.org/wiki/File:Cocktail_Party_At_The_Imperial_Hotel_March_13,_1961_(Tokyo,_Japan)_(496610682).jpg
https://commons.wikimedia.org/wiki/File:Cocktail_Party_At_The_Imperial_Hotel_March_13,_1961_(Tokyo,_Japan)_(496610682).jpg
https://commons.wikimedia.org/wiki/File:Cocktail_Party_At_The_Imperial_Hotel_March_13,_1961_(Tokyo,_Japan)_(496610682).jpg
https://commons.wikimedia.org/wiki/File:Cocktail_party_attendees_at_Fuller_Lodge,_1946.jpg
https://commons.wikimedia.org/wiki/File:Cocktail_party_attendees_at_Fuller_Lodge,_1946.jpg
https://commons.wikimedia.org/wiki/File:Cocktail-party_effect.svg


Bottom-up attention as a strategy for machine listening
• In 2014, researchers proposed that the past 200ms of RNN state vectors should 

be stored in a “short-term memory buffer”
• A speech recognizer can attend to several centiseconds, all at one time, to 

decide what words it thinks it is hearing

Chorowski, Bahdanau, Serdyk, Cho & Bengio, Attention-Based Models for Speech Recognition, Fig. 1

https://proceedings.neurips.cc/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf


The Transformer: “Attention is all you need”
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• In 2017, researchers proposed that 
the short-term memory buffer 
should contain raw signals, not 
processed signals.
• All processing is done using a model 

of bottom-up attention.

With…



Attention: Key concepts

• The neural net needs to make a series of decision vectors, 𝒐!
• Each decision needs to be based on some context vector, 𝒄!
• Each context vector is a weighted sum of input values, 𝒄! = ∑" 𝛼!,"𝒗"
• 𝛼!," is the amount of attention that the output decision 𝒐!  is paying to 

the input value 𝒗".  It is based on the similarity between a key vector, 
𝒌", that describes the type of information available in 𝒗", and a query 
vector, 𝒒!, that describes the type of information necessary in order 
to make the output decision



Inputs to an attention network

• Neural net inputs: a sequence of row vectors, 𝒙"
• Neural net outputs: a sequence of row vectors, 𝒐!
• Value: What type of information should 𝒙" provide to the output?  

This may be just a linear transform of 𝒙", e.g.: 𝒗" = 𝑾$𝒙"
• Query: What type of information does 𝑜!  need?  This may be just a 

linear transform of 𝒐!%&, e.g.: 𝒒! = 𝑾'𝒐!%&
• Key: The dot product 𝒒!(𝒌" should be positive if 𝒗" is useful, and 

negative if 𝒗" is useless.  This may be 𝒌" = 𝑾)𝒙"



Attention = a probability mass over time

• Attention is like probability: You only have a fixed amount of attention, so 
you need to decide how to distribute it.
• 𝛼!,# = 	𝑃(𝒗#|𝑞!) = the probability that 𝒗# is the context that you need in 

order to make a decision related to the query vector 𝒒!.
+
#

𝛼!,# = 1

• Each output context vector (𝒄!) is based on some input value vectors (𝒗#).  
But which ones?  Answer: decide which inputs to pay attention to, then pay 
attention.

𝒄! =+
#

𝛼!,#𝒗#



Dot-product attention
How can you decide which value vectors, 
𝑣" are most relevant to a particular query?  
Answer: 
1. Create a key vector, 𝒌", such that 

𝒒!(𝒌" > 0	 if 𝑣" 	is relevant to 𝒒!, 
otherwise	𝒒!(𝒌" < 0.

2. Convert the similarity measures into a 
probability distribution using softmax:

𝛼!," =
exp 𝒒!(𝒌"

∑* exp 𝒒!(𝒌*

By BenFrantzDale at the English Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=49972362



Putting it all together

• Stack up 𝒗#, 𝒌#, and 𝒒!into matrices:

𝑽 =
𝒗$%
⋮
𝒗&%

, 𝑲 =
𝒌$%
⋮
𝒌&%

, 𝑸 =
𝒒$%
⋮
𝒒'%

• 𝛼!,# is the tth output of a softmax whose input vector is 𝑲𝒒!:

𝛼!,# = softmax# 𝑲𝒒! =
exp 𝒒!%𝒌#
∑( exp 𝒒!%𝒌(

• 𝑐! is the product of the vector softmax 𝑲𝒒! 	times the 𝑽𝑻 matrix:

𝒄! = 𝑽𝑻softmax 𝑲𝒒! =+
#

𝛼!,# 𝒗#



Quiz!

Try the quiz! 
https://us.prairielearn.com/pl/course_instance/147925/assessment/24
12318

https://us.prairielearn.com/pl/course_instance/147925/assessment/2412318
https://us.prairielearn.com/pl/course_instance/147925/assessment/2412318
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Self-attention

Self-attention (literally!) adds context 
to each input vector:

𝒒! = 𝑾'𝒙!
𝒌" = 𝑾)𝒙"
𝒗" = 𝑾$𝒙"

𝒄! = 𝑽𝑻softmax 𝑲𝒒!

𝑦! =
𝒙! + 𝒄! − 𝐸 𝒙! + 𝒄!

𝑉𝑎𝑟 𝒙! + 𝒄!

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=121340680

https://commons.wikimedia.org/w/index.php?curid=121340680


Multi-headed-attention

Multi-headed-attention uses 8 different 
𝑤', 𝑤), and 𝑤$  matrices, in order to 
get 8 different views of the input data:

𝒒,,! = 𝑾,,'𝒙,,! , 	1 ≤ 𝑗 ≤ 8
𝒌,," = 𝑾,,)𝒙,," , 	 1 ≤ 𝑗 ≤ 8
𝒗,," = 𝑾,,$𝒙,," , 	 1 ≤ 𝑗 ≤ 8
𝒉,,! = 𝑽,(softmax 𝑲,𝒒,,!

𝒄! = 𝑾,,-

𝒉&,!
⋮
𝒉.,! By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=121340680

https://commons.wikimedia.org/w/index.php?curid=121340680


Cross-attention

Cross-attention: query depends on 
preceding output, key and value 
depend on input:

𝒒,,! = 𝑾,,'𝒐,,!%&
𝒌,," = 𝑾,,)𝒙,,"
𝒗,," = 𝑾,,$𝒙,,"

𝒉,,! = 𝑽,(softmax 𝑲,𝒒,,!

By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=121340680

https://commons.wikimedia.org/w/index.php?curid=121340680


Masked attention

Masked attention forces 𝑐! 	to pay 
attention to value vectors 𝑣" 	only if 𝑡 <
𝑖:

𝑠 𝒒! , 𝒌" = O𝒒!
(𝒌" 𝑡 < 𝑖
−∞ 𝑡 ≥ 𝑖

𝛼!," =
exp 𝑠 𝒒! , 𝒌"

∑* exp 𝑠 𝒒! , 𝒌*

= Osoftmax 𝒒!
(𝒌" 𝑡 < 𝑖

0 𝑡 ≥ 𝑖
By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=121340680

https://commons.wikimedia.org/w/index.php?curid=121340680


Cross-attention visualization
This plot shows 𝛼!," where 𝑖 = output character, and 𝑡 = input spectrum

Chorowski, Bahdanau, Serdyk, Cho & Bengio, Attention-Based Models for Speech Recognition, Fig. 1

https://proceedings.neurips.cc/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf


Word Error 
Rates using 
Transformers

By 9/2020, transformers had error rates of:
• 2%: English, quiet recording conditions
• 4%: Chinese or Japanese, quiet recording conditions
• 5-7%: if the reference transcript has errors
• 14%: 2-talker mixtures, synthetic reverberation
• 38%: actual in-home recordings in noisy households

Guo, Boyer, Chang, Hayashi, Higuchi et al., ICASSP 2021, © IEEE

https://ieeexplore.ieee.org/abstract/document/9414858
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What we have lost…

• With the recurrent neural net, each state vector paid attention to the 
one that preceded it:

𝒉" = tanh 𝑼𝒗" + 𝑽𝒉"%&
• With a transformer, each state vector pays attention to the input that 

is most similar, regardless of what time it happened:

𝒉! =U
"

𝛼!," 𝒗" , 	 𝛼!," =
exp 𝒒!(𝒌"

∑* exp 𝒒!(𝒌*
• What if we always want 𝒉" to pay special attention to 𝒗"%&?  Is that 

possible?



Position encoding by Fourier basis

The solution is to encode the relative 
position of each input, 𝒗#, using a Fourier 
basis 𝒆#:

𝒆# =

cos
𝜋𝑡
𝑇

sin
𝜋𝑡
𝑇
⋮

cos
𝜋𝐷𝑡
2𝑇

sin
𝜋𝐷𝑡
2𝑇

Public domain image, 
https://commons.wikimedia.org/wiki/File:An_elementary_treatise_on_Fourier%27s_series_an
d_spherical,_cylindrical,_and_ellipsoidal_harmonics,_with_applications_to_problems_in_math
ematical_physics_(1893)_(14780364665).jpg

https://commons.wikimedia.org/wiki/File:An_elementary_treatise_on_Fourier%27s_series_and_spherical,_cylindrical,_and_ellipsoidal_harmonics,_with_applications_to_problems_in_mathematical_physics_(1893)_(14780364665).jpg
https://commons.wikimedia.org/wiki/File:An_elementary_treatise_on_Fourier%27s_series_and_spherical,_cylindrical,_and_ellipsoidal_harmonics,_with_applications_to_problems_in_mathematical_physics_(1893)_(14780364665).jpg
https://commons.wikimedia.org/wiki/File:An_elementary_treatise_on_Fourier%27s_series_and_spherical,_cylindrical,_and_ellipsoidal_harmonics,_with_applications_to_problems_in_mathematical_physics_(1893)_(14780364665).jpg


Position encoding by Fourier basis
The Fourier basis is useful because shifting 
by a fixed time offset, to 𝑡 − 𝑑, can be 
accomplished by a matrix multiplication:

𝒆#*+ =
cos

𝜋𝑑
𝑇 sin

𝜋𝑑
𝑇 ⋯

−sin
𝜋𝑑
𝑇 cos

𝜋𝑑
𝑇 ⋯

⋮ ⋮ ⋱

𝒆#

…so if we want a particular query to pay 
attention to vectors with a time delay of 𝑑, 
we just set 𝑾,,- to the matrix shown 
above. 

Public domain image, 
https://commons.wikimedia.org/wiki/File:Exponentials_of_complex_number_within_unit_circl
e-2.svg

https://commons.wikimedia.org/wiki/File:Exponentials_of_complex_number_within_unit_circle-2.svg
https://commons.wikimedia.org/wiki/File:Exponentials_of_complex_number_within_unit_circle-2.svg


Where do we put the positional encoding?

• Possibility #1: Concatenate it, i.e., 𝒙"( = 𝒙"( , 𝒆"(
• Advantage: 𝑾%,0 can learn to operate separately on the content 𝒙!1 and the 

positional encoding 𝒆!1
• Disadvantage: every vector is twice as large, and every matrix is four times as 

large

• Possibility #2: Add it, i.e.,  𝒙" = 𝒙" + 𝒆"
• Advantage: fewer parameters to learn
• Disadvantage: 𝑾%,0 can only operate directly on 𝒆! if 𝒙! is mostly zero
• Surprise: this works well in practice.  Apparently, the positional encoding can 

learn to ignore local fluctuations in 𝒙!, and pretend that it’s mostly 0 on 
average



Positional encoding

In the standard transformer, position of 
the input is encoded using

𝒙" = 𝒙" +

cos
𝜋𝑡
𝑇

sin
𝜋𝑡
𝑇
⋮

cos
𝜋𝐷𝑡
2𝑇

sin
𝜋𝐷𝑡
2𝑇 By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=121340680

https://commons.wikimedia.org/w/index.php?curid=121340680


Summary

• Recurrent neural networks
𝒉! = tanh 𝑼𝒗! + 𝑽𝒉!"#

• Attention

𝒄' = 𝑽𝑻softmax 𝑲𝒒' =N
!

exp 𝒒'1𝒌!
∑3 exp 𝒒'1𝒌3

𝒗!

• Self-attention, Multi-headed attention, Cross-attention, and Masked attention
• Positional encoding

𝒙! +=
cos

𝜋𝑡
𝑇

sin
𝜋𝑡
𝑇
⋮


