CS 440/ECE448 Lecture 24: Repeated Games

Mark Hasegawa-Johnson, 3/2024
These slides are in the public domain.

Public domain. https://commons.wikimedia.org/wiki/File:Indiana In Early Fight, But Succumbs To Chicago, November 10, 1923 (cropped).jpg

Outline

- Mathematical foundations
- Repeated games and the rational basis for cooperation
- Learning an episodic game
- Learning a sequential game

Review: Markov decision process

- $s \in \mathcal{S}$: state of the environment (could be int, real, tuple, whatever)
- $r(s) \in \mathbb{R}$: reward received in state s
- $u(s) \in \mathbb{R}$: utility of state $s=$ expected discounted sum of all future rewards
- $a \in \mathcal{A}$: action (usually \mathcal{A} is a discrete finite set)
- $\pi: \mathcal{S} \rightarrow \mathcal{A}$: policy $=$ best action for each state
- The optimum action is given by Bellman's equation:

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

Review: Expectiminimax

- In a two-player, zero-sum game, each player wins exactly as much as the other player loses.
- The player trying to maximize $u(s)$ is called "Max," the player trying to minimize $u(s)$ is called "Min."
- Bellman's equation:

$$
u(s)= \begin{cases}r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a max state } \\ r(s)+\gamma \min _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a min state }\end{cases}
$$

Simultaneous games

- If players play simultaneously, then the best strategy might be to choose a move at random (e.g., game of Chicken: make sure opponent can't predict your action with certainty)
- Instead of a scalar $\pi(s)=$ action, we can use

$$
\boldsymbol{\pi}(s)=\left[\begin{array}{c}
\pi_{1}(s) \\
\vdots \\
\pi_{|\mathcal{A}|}(s)
\end{array}\right], \boldsymbol{\varphi}(s)=\left[\begin{array}{c}
\varphi_{1}(s) \\
\vdots \\
\varphi_{|\mathcal{B}|}(s)
\end{array}\right]
$$

- $\pi_{a}(s)=$ probability that player 1 chooses action a in state s
- $\varphi_{b}(s)=$ probability that player 2 chooses action b in state s

$$
0 \leq \pi_{a}(s) \leq 1, \sum_{a=1}^{|\mathcal{A}|} \pi_{a}(s)=1, \quad 0 \leq \varphi_{b}(s) \leq 1, \sum_{b=1}^{|\mathcal{B}|} \varphi_{b}(s)=1
$$

Rewards and utility for simultaneous games

- $r_{1}(s, a, b)=$ Reward that player 1 receives in state s if player 1 chooses action a and player 2 chooses action b
- $r_{2}(s, a, b)=$ Reward that player 2 receives in state s if player 1 chooses action a and player 2 chooses action b
- $u_{1}(s)=$ Utility of state s for player 1
- $u_{2}(s)=$ Utility of state s for player 2
- $P\left(s^{\prime} \mid s, a, b\right)=$ Probability of a transition to s^{\prime} from s if player 1 chooses action a and player 2 chooses action b

Bellman's equation for repeated simultaneous two-player games

The probability of action a is $\pi_{a}(s)$, the probability of action b is $\varphi_{b}(s)$, and the probability of a transition to state s^{\prime} is $P\left(s^{\prime} \mid s, a, b\right)$, so the expected sum of all future rewards under policies $\boldsymbol{\pi}$ and $\boldsymbol{\varphi}$ is:

$$
\begin{aligned}
& u_{1}(s)=\sum_{a, b} \pi_{a}(s) \varphi_{b}(s)\left(r_{1}(s, a, b)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a, b\right) u_{1}\left(s^{\prime}\right)\right) \\
& u_{2}(s)=\sum_{a, b} \pi_{a}(s) \varphi_{b}(s)\left(r_{2}(s, a, b)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a, b\right) u_{2}\left(s^{\prime}\right)\right)
\end{aligned}
$$

The best policies, for each player, are:

$$
\begin{aligned}
& \boldsymbol{\pi}(s)=\underset{\boldsymbol{\pi}}{\operatorname{argmax}} u_{1}(s) \\
& \boldsymbol{\varphi}(s)=\underset{\boldsymbol{\varphi}}{\operatorname{argmax}} u_{2}(s)
\end{aligned}
$$

Outline

- Mathematical foundations
- Repeated games and the rational basis for cooperation
- Learning an episodic game
- Learning a sequential game

Repeated games and the rational basis for cooperation

The Iterated Prisoner's Dilemma and The Evolution of Cooperation
https://www.youtube.com/watch?v=BOvAbjfJ0x0\&t=331s Image © This Place blog

Outline

- Mathematical foundations
- Repeated games and the rational basis for cooperation
- Learning an episodic game
- Learning a sequential game

Learning an episodic game

Repeated games can be either episodic or sequential:

- Sequential: your actions can change the environment s, which changes the reward $r_{1}(s, a, b)$ and the other player's strategy $\boldsymbol{\varphi}(s)$
- Episodic: your actions don't change the environment. Your reward is $r_{1}(a, b)$, your strategy is π, your opponent's reward is $r_{2}(a, b)$, and their strategy is $\boldsymbol{\varphi}$.

Repeating an episodic game allows us to iteratively optimize our strategy vector $\boldsymbol{\pi}$, using methods kind of like gradient descent.

Example: The lunch game

- Alice and Bob have agreed that they should always meet at the boat club for lunch.
- Each day, each of them must decide to either:
- Cooperate: go to the boat club for lunch
- Defect: go to the museum for lunch
- If they both cooperate, they eat lunch together
- If they both defect, they eat lunch together
- If one cooperates and the other defects, they each eat lunch alone

Example: The lunch game

- Alice prefers reading to talking
- If they eat lunch together, she gets 1 happiness point
- If they eat lunch alone, she gets 2 happiness

Defect Cooperate
 points

- Bob prefers talking to reading
- If they eat lunch together, he gets 2 happiness points
- If they eat lunch alone, he gets 1 happiness point

Example: The lunch game

- Alice's strategy is $\boldsymbol{\pi}=\left[\begin{array}{l}\pi_{1} \\ \pi_{2}\end{array}\right]$
- $\pi_{2}=\frac{1}{1+e^{-x}}$ is the probability she cooperates
- $\pi_{1}=1-\pi_{2}$
- Bob's strategy is $\boldsymbol{\varphi}=\left[\begin{array}{l}\varphi_{1} \\ \varphi_{2}\end{array}\right]$
- $\varphi_{2}=\frac{1}{1+e^{-y}}$ is the probability he cooperates
- $\varphi_{1}=1-\varphi_{2}$

Defect Cooperate

Example: The lunch game

Bob

- Alice's strategy is $\boldsymbol{\pi}=\left[\begin{array}{l}\pi_{1} \\ \pi_{2}\end{array}\right]$
- Bob's strategy is $\boldsymbol{\varphi}=\left[\begin{array}{l}\varphi_{1} \\ \varphi_{2}\end{array}\right]$

- Alice's expected reward is

$$
u_{1}=\boldsymbol{\pi}^{T} \boldsymbol{R}_{\mathbf{1}} \boldsymbol{\varphi}=\left[\pi_{1}, \pi_{2}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2}
\end{array}\right]
$$

- Bob's expected reward is

$$
u_{2}=\boldsymbol{\pi}^{T} \boldsymbol{R}_{\mathbf{2}} \boldsymbol{\varphi}=\left[\pi_{1}, \pi_{2}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2}
\end{array}\right]
$$

The Nash Equilibrium

Bob

- Alice's expected reward is

$$
u_{1}=\boldsymbol{\pi}^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \boldsymbol{\varphi}
$$

- Bob's expected reward is

$$
u_{2}=\boldsymbol{\pi}^{T}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \boldsymbol{\varphi}
$$

Defect Cooperate

- The Nash equilibrium is:

$$
\pi=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right], \quad \varphi=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]
$$

...you can verify that this is a Nash equilibrium by noticing that

- If $\boldsymbol{\pi}=\left[\begin{array}{c}0.5 \\ 0.5\end{array}\right]$, then Bob has no preference between cooperating and defecting, so he can choose at random.
- If $\boldsymbol{\varphi}=\left[\begin{array}{c}0.5 \\ 0.5\end{array}\right]$, then Alice has no preference, and can choose at random.

Simultaneous gradient ascent

$$
u_{1}=\boldsymbol{\pi}^{T} \boldsymbol{R}_{\mathbf{1}} \boldsymbol{\varphi}, \quad u_{2}=\boldsymbol{\pi}^{T} \boldsymbol{R}_{\mathbf{2}} \boldsymbol{\varphi}, \quad \boldsymbol{\pi}=\left[\begin{array}{c}
e^{-x} /\left(1+e^{-x}\right) \\
1 /\left(1+e^{-x}\right)
\end{array}\right], \quad \boldsymbol{\varphi}=\left[\begin{array}{c}
e^{-y} /\left(1+e^{-y}\right) \\
1 /\left(1+e^{-y}\right)
\end{array}\right]
$$

- Can we use some type of machine learning algorithm to find the "optimum values" of $\boldsymbol{\pi}$ and φ, i.e., the Nash equilibrium?
- Alice chooses $\boldsymbol{\pi}$ to maximize u_{1} for any given $\boldsymbol{\varphi}$
- Bob chooses $\boldsymbol{\varphi}$ to maximize u_{2} for any given $\boldsymbol{\pi}$
- One thing we can try is "simultaneous gradient ascent:" adjust x and y in order to maximize both u_{1} and u_{1} simultaneously:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \leftarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]+\eta\left[\begin{array}{l}
\boldsymbol{\nabla}_{\boldsymbol{x}} u_{1} \\
\boldsymbol{\nabla}_{\boldsymbol{y}} u_{2}
\end{array}\right]
$$

- (...where $\boldsymbol{\nabla}_{\boldsymbol{x}} u_{1}$ is general notation for the gradient of u_{1} w.r.t. x. In this case, since x is a scalar, $\left.\nabla_{x} u_{1}=\partial u_{1} / \partial x\right)$

Try the quiz!

Try the quiz:
https://us.prairielearn.com/pl/course instance/147925/assessment/24 08126

Simultaneous gradient ascent

- Surprisingly, simultaneous gradient ascent fails.
- The graph at right is the sequence of vectors

$$
\left[\begin{array}{l}
\pi_{2} \\
\varphi_{2}
\end{array}\right]=\left[\begin{array}{l}
1 /\left(1+e^{-x}\right) \\
1 /\left(1+e^{-y}\right)
\end{array}\right]
$$

...obtained using

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \leftarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]+\eta\left[\begin{array}{l}
\partial u_{1} / \partial x \\
\partial u_{2} / \partial y
\end{array}\right]
$$

Simultaneous gradient ascent

- Why does it never converge?
- If Bob is at the boat club w/prob $\varphi_{2}<0.5$, then Alice increases x (so she can eat alone more often)
- If Alice is at the boat club $w /$ prob $\pi_{2}>0.5$, then Bob increases y (so he can eat with her more often)
- If Bob is at the boat club w/prob $\varphi_{2}>0.5$, then Alice decreases x (so she can eat alone more often)
- If Alice is at the boat club $w /$ prob $\pi_{2}<0.5$, then Bob decreases y (so he can eat with her more often)
- ... and so on, forever.

Digression: orbital mechanics

- This is exactly like the orbit of a spaceship around a planet (the equations are the same)
- We can make it converge the same way we would make a spaceship's orbit decay: apply friction

The symplectic correction

- The solution is to apply friction. The friction term we apply is something that (Balduzzi et al., 2018) called "the symplectic correction " (named after orbital mechanics a.k.a. symplectic mechanics). It looks like this:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \leftarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]+\eta(\boldsymbol{I}+\boldsymbol{C})\left[\begin{array}{l}
\partial u_{1} / \partial x \\
\partial u_{2} / \partial y
\end{array}\right]
$$

- The matrix \boldsymbol{C} is called the symplectic correction. It is $\boldsymbol{C}=\lambda\left(\boldsymbol{H}^{T}-\boldsymbol{H}\right)$, where λ is a scalar, and \boldsymbol{H} is something called the Hessian:

$$
\boldsymbol{H}=\left[\begin{array}{cc}
\partial^{2} u_{1} / \partial x^{2} & \partial^{2} u_{1} / \partial x \partial y \\
\partial^{2} u_{2} / \partial x \partial y & \partial^{2} u_{2} / \partial y^{2}
\end{array}\right]
$$

Corrected gradient ascent

- The graph at right is the sequence of vectors

$$
\left[\begin{array}{l}
\pi_{2} \\
\varphi_{2}
\end{array}\right]=\left[\begin{array}{l}
1 /\left(1+e^{-x}\right) \\
1 /\left(1+e^{-y}\right)
\end{array}\right]
$$

...obtained using

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \leftarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]+\eta(\boldsymbol{I}+\boldsymbol{C})\left[\begin{array}{l}
\partial u_{1} / \partial x \\
\partial u_{2} / \partial y
\end{array}\right]
$$

- As you can see, the correction causes it to "fall" toward the Nash equilibrium at $\boldsymbol{\pi}=\left[\begin{array}{c}0.5 \\ 0.5\end{array}\right], \boldsymbol{\varphi}=\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$.

The logits have converged to: [0.00086998 -0.00093214]

Outline

- Mathematical foundations
- Repeated games and the rational basis for cooperation
- Learning an episodic game
- Learning a sequential game

What about tit-for-tat?

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \leftarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]+\eta(\boldsymbol{I}+\boldsymbol{C})\left[\begin{array}{l}
\partial u_{1} / \partial x \\
\partial u_{2} / \partial y
\end{array}\right]
$$

...works if we only want each player to maximize their reward one game at a time, without thinking about future games.

- Strategies like tit-for-tat are a little more complicated: Tit-for-tat remembers how its opponent played last time, and retaliates if its opponent defected.

What about tit-for-tat?

We can model tit-for-tat by supposing that:

1. the reward matrix depends only on the actions, not the state

$$
\begin{aligned}
& r_{1}\left(s_{t}, a_{t}, b_{t}\right)=r_{1}\left(a_{t}, b_{t}\right) \\
& r_{2}\left(s_{t}, a_{t}, b_{t}\right)=r_{2}\left(a_{t}, b_{t}\right)
\end{aligned}
$$

2. each player remembers a "state" variable consisting of the other player's recent move:

$$
\begin{gathered}
s_{t}=\left(a_{t-1}, b_{t-1}\right) \\
P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a, b\right)= \begin{cases}1 & s^{\prime}=(a, b) \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Under these simplifications, the learning algorithm is four times harder than that of the episodic game: we have to learn $\boldsymbol{\pi}\left(s_{t}\right)$ and $\boldsymbol{\varphi}\left(s_{t}\right)$ separately for each state.

What about tit-for-tat?

The MP08 extra credit will ask you to create a strategy for a sequential game. You can learn it if you want to, or you can just specify it. For example, the tit-for-tat strategy is

$$
\boldsymbol{\pi}(s)=\left\{\begin{array}{l}
{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad b_{t-1}=1} \\
{\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad b_{t-1}=2 \text { or } t=1}
\end{array}\right.
$$

Conclusions

- Policy probabilities:

$$
\begin{gathered}
\pi_{a}(s)=\operatorname{Pr}\left(A_{t}=a \mid S_{t}=s\right) \\
\varphi_{b}(s)=\operatorname{Pr}\left(B_{t}=b \mid S_{t}=s\right) \\
u_{1}(s)=\sum_{a, b} \pi_{a}(s) \varphi_{b}(s)\left(r_{1}(s, a, b)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a, b\right) u_{1}\left(s^{\prime}\right)\right) \\
\pi(s)=\underset{\pi}{\operatorname{argmax}} u_{1}(s)
\end{gathered}
$$

- Learning episodic games using corrected gradient ascent:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \leftarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]+\eta(\boldsymbol{I}+\boldsymbol{C})\left[\begin{array}{l}
\partial u_{1} / \partial x \\
\partial u_{2} / \partial y
\end{array}\right]
$$

