
CS440/ECE448 Lecture 21:
Two-Player Games

Mark Hasegawa-Johnson, 4/2024
All slides are public domain; reproduce or re-
use at will

By Karl Gottlieb von Windisch - Copper engraving from the book: Karl Gottlieb von Windisch,
Briefe über den Schachspieler des Hrn. von Kempelen, nebst drei Kupferstichen die diese
berühmte Maschine vorstellen. 1783.Original Uploader was Schaelss (talk) at 11:12, 7. Apr
2004., Public Domain, https://commons.wikimedia.org/w/index.php?curid=424092

Outline
•Alternating two-player zero-sum games
•Minimax search
•Evaluation functions
•Alpha-beta search
•Computational complexity of alpha-beta

Games vs. single-agent search
• We don’t know how the opponent will act
• The solution is not a fixed sequence of actions from start

state to goal state, but a strategy or policy

Definition of policy: a policy is a function 𝜋: 𝒮 → 𝒜 that
maps from world states, s ∈ 𝒮, to actions, a ∈ 𝒜.

Alternating two-player zero-sum games

• Players take turns
• Each game outcome or terminal state has a utility for each player

(e.g., 1 for win, 0 for tie, -1 for loss)
• The sum of both players’ utilities is a constant, e.g.,

Utility(player 0) + Utility(player 1) = 0

• Player 0 tries to maximize Utility(player 0). Let’s call this player “Max”
• Player 1 tries to minimize Utility(player 0). Let’s call this player “Min”

Game tree
A game of tic-tac-toe between two players, “max” and “min”

A more abstract game tree

= game state from which MAX can play
= game state from which MIN can play

number = value of that game state for MAX

Outline
•Alternating two-player zero-sum games
•Minimax search
•Evaluation functions
•Alpha-beta search
•Computational complexity of alpha-beta

Game tree search

• Minimax value of a node: the utility (for MAX) of being in the
corresponding state, assuming perfect play on both sides

• Minimax strategy: Choose the move that gives the best worst-case payoff

3 2 2

3

Computing the minimax value of a node

• Minimax(node) =
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

Optimality of minimax

• The minimax strategy is optimal against
an optimal opponent

• What if your opponent is suboptimal?
• If you play using the minimax-optimal

sequence of moves, then the utility you
earn will always be greater than or
equal to the amount that you predict.

11

Example from D. Klein and P. Abbeel

Multi-player games; Non-zero-sum games
• More than two players. For example:
• Dog (🐶) tries to maximize the number of doggie treats
• Cat (🐱) tries to maximize the number of cat treats
• Mouse (🐭) tries to maximize the number of mouse treats

• Non-zero-sum. We can’t just assume that Min’s score is
the opposite of Max’s. Instead, utilities are now tuples.
For example:
• (🐶5, 🐱8, 🐭2) = 5 doggie treats, 8 kitty treats, 2 mouse treats

• Each player maximizes their own utility at their node

Minimax in multi-player & non-zero-sum games

🐶

🐱 🐱

🐭 🐭 🐭 🐭

(🐶1,
🐱2,
🐭6)

(🐶4,
🐱3,
🐭2)

(🐶6,
🐱1,
🐭2)

(🐶7,
🐱4,
🐭1)

(🐶5,
🐱1,
🐭1)

(🐶2,
🐱5,
🐭2)

(🐶7,
🐱7,
🐭1)

(🐶5,
🐱4,
🐭5)

(🐶1,
🐱2,
🐭6)

(🐶6,
🐱1,
🐭2)

(🐶2,
🐱5,
🐭2)

(🐶5,
🐱4,
🐭5)

(🐶1,
🐱2,
🐭6)

(🐶2,
🐱5,
🐭2)

(🐶2, 🐱5, 🐭2)

Outline
•Alternating two-player zero-sum games
•Minimax search
•Evaluation functions
•Alpha-beta search
•Computational complexity of alpha-beta

Limited-Horizon Search: limited computation

In a practical game, we compute minimax to a limited depth, because we
have limited computational ability
• Depth=1: evaluate every possible current move, look at the resulting game

state, decide which resulting game state looks the best, and take that
action.
• Computational complexity to choose your next move: 𝒪 𝑏 , if there are b possible

moves.
• Depth=2: evaluate every possible current move, and every move that your

opponent might make in response, and then look at resulting game states.
• Computational complexity to choose your next move: 𝒪 𝑏! .

• Depth=3: evaluate every possible sequence of three moves (mine, my
opponent’s, then mine), and look at the resulting game states.
• Computational complexity to choose your next move: 𝒪 𝑏" .

Evaluation functions

In order to evaluate the quality of a game state s ∈ 𝒮, we need to
design an evaluation function 𝑣(𝑠). It should have the following
properties:
• 𝑣(𝑠) should be a reasonable estimate of the outcome of the game,

but
• It must be possible to compute 𝑣(𝑠) quickly, i.e., typically we desire

that its computational complexity is no more than 𝒪 𝑏 . If its
complexity was higher, then we might get better results by using a
cheaper evaluation function in a deeper minimax search.

Example:
Depth 1
search,
Chess

In chess, traditionally, the black
player is MIN.
What move should MIN choose,
from this board position?

Graphics: created by the PyChess community.
Game board shown: game1.txt from the MP5 distribution.

Example:
Depth 1
search,
Chess

𝑣 𝑠 = −4 𝑣 𝑠 = −4 𝑣 𝑠 = −4 𝑣 𝑠 = −5

In chess, traditionally, the black
player is MIN.
Since one move has a final
board value less than the
others, MIN will choose that
move (in a depth-1 search).

Example:
Depth 2
search,
Chess

𝑣 𝑠 = −4 𝑣 𝑠 = −1

…

…

…

………

𝑣 𝑠 = −5 − 1X

Typical chess evaluation function
Each side receives:
•9 points per remaining queen
•5 points per remaining rook
•3 points per remaining bishop
•3 points per remaining knight
•1 point per remaining pawn
𝑣 𝑠 = points for white - points
for black

The PyChess
evaluation function
provides extra point
depending on the
location of each piece
on the board.

Evaluation functions in general

Evaluation function must be reasonably accurate, but computationally
simple. Often this means a linear evaluation function:

𝑣 𝑠 = 𝑤!𝑓! 𝑠 + 𝑤"𝑓" 𝑠 + ⋯
• 𝑓! 𝑠 , 𝑓" 𝑠 , … are features of the game state 𝑠
• 𝑤!, 𝑤"… are real-valued weights.

Notice: this is just a one-layer neural net, with input vector 𝑓 𝑠 =
𝑓! 𝑠 , 𝑓" 𝑠 , … and weight vector 𝑤 = 𝑤!, 𝑤", … .

Recently, deeper neural nets are also sometimes used.

Cutting off search

• Horizon effect: you may incorrectly estimate the value of a state by
overlooking an event that is just beyond the depth limit
• For example, a damaging move by the opponent that can be delayed but not

avoided

• Remedies: search a small number of possible extensions to depth+1.
• Quiescence search: extend only “unstable” moves, e.g., moves that capture a

piece.
• Singular extension: extend only very strong moves.
• Stochastic search: randomly sample a small number of possible future paths.

Outline
•Alternating two-player zero-sum games
•Minimax search
•Evaluation functions
•Alpha-beta search
•Computational complexity of alpha-beta

Computational complexity of minimax

• Suppose that, at each game state, there are b possible moves
• Suppose we search to a depth of d
• Then the computational complexity is 𝑂{𝑏#}!

Basic idea of alpha-beta pruning

• Computational complexity of minimax is 𝑂{𝑏#}
• There is no known algorithm to make it polynomial time
• But… can we reduce the exponent? For example, could we make the

complexity 𝑂{𝑏#/"}?
• If we could do that, then it would become possible to search twice as

far, using the same amount of computation. This could be the
difference between a beginner chess player vs. a grand master.

Basic idea of alpha-beta pruning

• The basic idea of alpha-beta pruning is to reduce the complexity of
minimax from 𝑂{𝑏#} to 𝑂{𝑏#/"}.
• We can do this by only evaluating half of the levels.
• How can we ”only evaluate half the levels” without losing accuracy?
• Why it works: It is possible to compute the exact minimax decision

without expanding every node in the game tree

The pruning thresholds, alpha and beta

Alpha-beta pruning requires us to keep track of two pruning thresholds,
alpha and beta.
• alpha (𝛼) is the highest score that MAX knows how to force MIN to

accept.
• beta (𝛽) is the lowest score that MIN knows how to force MAX to

accept.
• 𝛼 ≤ 𝛽

Alpha-beta pruning

𝛼 = −∞,
𝛽 = ∞

Initialize:
• alpha (𝛼) is the highest score that MAX knows how to force MIN to accept,

which is initially −∞.
• beta (𝛽) is the lowest score that MIN knows how to force MAX to accept,

which is initially ∞.

Alpha-beta pruning
Inheritance: Child inherits alpha and beta from its parent

𝛼 = −∞,
𝛽 = ∞

𝛼 = −∞,
𝛽 = ∞

Alpha-beta pruning
Update: a min node can update beta. A max node can
update alpha.

3 𝛼 = −∞,
𝛽 = 3

𝛼 = −∞,
𝛽 = ∞

Alpha-beta pruning

3

³3

𝛼 = −∞,
𝛽 = 3

𝛼 = 3,
𝛽 = ∞

Update: a min node can update beta. A max node can
update alpha.

Alpha-beta pruning

3

³3
𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = ∞

Inheritance: Child inherits alpha and beta from its parent

Alpha-beta pruning

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = 2

Update: a min node can update beta. A max node can
update alpha.

Alpha-beta pruning

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = 2

X

PRUNE!
• If MAX lets us get to this

state, then MIN would
achieve a final score <=2
• Therefore MAX will never

let us get to this state!
• Therefore there’s no need

to score the remaining
children of this node.

Pruning: If beta ever falls below alpha, prune any remaining
children, and return.

Alpha-beta pruning

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = ∞

Inheritance: Child inherits alpha and beta from its parent

Alpha-beta pruning

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = 14

Update: a min node can update beta. A max node can
update alpha.

Alpha-beta pruning

3

³3

£2
𝛼 = 3,
𝛽 = 5

𝛼 = 3,
𝛽 = ∞

Update: a min node can update beta. A max node can
update alpha.

Alpha-beta pruning

3

3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = 2

Violation of 𝛼 < 𝛽
means it is now possible
to prune any remaining
children of this node.

Pruning: If beta ever falls below alpha, prune any remaining
children, and return.

The alpha-beta algorithm

• Max inherits 𝛼, 𝛽 from parents, sets 𝑣 = −∞, then for each child:
• Set 𝑣 = max(𝑣, child’s 𝑣)
• Set 𝛼 = max(𝛼, child’s 𝑣)
• If 𝛼 ≥ 𝛽, prune all remaining children

• Min inherits 𝛼, 𝛽 from parents, sets 𝑣 = ∞, then for each child:
• Set 𝑣 = min(𝑣, child’s 𝑣)
• Set 𝛽 = min(𝛽, child’s 𝑣)
• If 𝛼 ≥ 𝛽, prune all remaining children

Quiz

• Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/24
03837

https://us.prairielearn.com/pl/course_instance/147925/assessment/2403837
https://us.prairielearn.com/pl/course_instance/147925/assessment/2403837

Outline
•Alternating two-player zero-sum games
•Minimax search
• Limited-horizon computation and heuristic evaluation

functions
•Alpha-beta search
•Computational complexity of minimax and alpha-beta

Computational complexity of alpha-beta
pruning
•The worst-case complexity of alpha-beta is the same

as the complexity of minimax: 𝑂{𝑏%}
•The best-case complexity is 𝑂{𝑏%/'}
• It is often possible to achieve results close to the best-

case by using a heuristic to sort the nodes before
searching them

Optimal ordering

Minimum computational complexity (𝑂{𝑏#/"}) is only achieved if:

• The children of a MAX node are evaluated, in order, starting with the
highest-value child.
• The children of a MIN node are evaluated, in order, starting with the

lowest-value child.

Non-optimal ordering
In this tree, the moves are not optimally ordered, so we were only
able to prune two nodes.

X X

3

3

£2 2

𝛼 = −∞, 3
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞, 3

𝛼 = 3
𝛽 = ∞, 2

𝛼 = 3
𝛽 = ∞, 14,5,2

Optimal ordering
In this tree, the moves ARE optimally ordered, so we are able to
prune four nodes (out of nine).

X X

3

3

£2

2 5 14

£2

X X

𝛼 = −∞, 3
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞, 3

𝛼 = 3
𝛽 = ∞, 2

𝛼 = 3
𝛽 = ∞, 2

Computational Complexity

Consider a sequence of two levels, with 𝑏 moves per level, and with optimal
ordering.
• There are 𝑏" terminal nodes.
• Alpha-beta will evaluate all the children of the first child: 𝑏 nodes.
• Alpha-beta will also evaluate the first child of each non-first child: 𝑏 − 1

nodes.
• In total, alpha-beta will evaluate 2𝑏 − 1 out of every 𝑏" nodes.
• For a tree of depth d, the number of nodes evaluated by alpha-beta is

2𝑏 − 1 #/" = 𝑂{𝑏#/"}

2 5 14

X X X X

Computational Complexity

…but wait… this means we need to know, IN ADVANCE, which move has the
highest value, and which move has the lowest value!!

• Obviously, it is not possible to know the true value of a move without
evaluating it.
• However, heuristics often are pretty good.
• We use the heuristic to decide which move to evaluate first.
• For games like chess, with good heuristics, complexity of alpha-beta is closer

to 𝑂{𝑏#/"} than to 𝑂{𝑏#}.

2 5 14

X X X X

Conclusions
• Alternating two-player zero-sum games
• ⋀ = a max node, ⋁ = a min node

• Minimax search
• 𝑣 𝑠 = max

#
𝑣(child(𝑠, 𝑎)) or 𝑣 𝑠 = min

#
𝑣(child(𝑠, 𝑎))

• Limited-horizon computation and heuristic evaluation functions
𝑣 𝑠 = 𝑤!𝑓! 𝑠 + 𝑤"𝑓" 𝑠 + ⋯

• Alpha-beta search
• Min node can update beta, Max node can update alpha
• If beta ever falls below alpha, prune the rest of the children

• Computational complexity of minimax and alpha-beta
• Minimax is 𝑂{𝑏!}. With optimal move ordering, alpha-beta is 𝑂{𝑏!/#}.

