CS440/ECE448 Lecture 20: Markov Decision Processes

Mark Hasegawa-Johnson, 3/2024
These slides are in the public domain.

Grid World
Invented and drawn by Peter Abbeel and Dan Klein, UC Berkeley CS 188

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration
- Comparison of value iteration and policy iteration

How does an intelligent agent plan its actions?

- If there is no randomness: Use A* search to plan the best path
- What if our movements are affected by randomness?

Example: Grid World

Invented by Peter Abbeel and Dan Klein

- Maze-solving problem: state is $s=(i, j)$, where $0 \leq i \leq 2$ is the row and $0 \leq j \leq 3$ is the column.
- The robot is trying to find its way to the diamond.
- If it reaches the diamond, it gets a reward of $r((0,3))=+1$ and the game ends.
- If it falls in the fire it gets a
 reward of $r((1,3))=-1$ and the game ends.

Example: Grid World

Invented by Peter Abbeel and Dan Klein
Randomness: the robot has shaky actuators. If it tries to move forward,

- With probability 0.8, it succeeds
- With probability 0.1, it falls left
- With probability 0.1, it falls right

Markov Decision Process

A Markov Decision Process (MDP) is defined by:

- A set of states, $s \in \mathcal{S}$
- A set of actions, $a \in \mathcal{A}$
- A transition model, $P\left(S_{t+1}=s_{t+1} \mid S_{t}=s_{t}, a_{t}\right)$
- S_{t} is the state at time t
- a_{t} is the action taken at time t (not random)
- A reward function, $r(s)$

Solving an MDP: The Policy

- The solution to a maze is a path: the shortest path from start to goal
- In MDP, finding 1 path is not enough: randomness might cause us to accidentally deviate from the optimal path.

Solving an MDP: The Policy

- Since $P\left(S_{t+1}=s_{t+1} \mid S_{t}=s_{t}, a_{t}\right)$ and $r(s)$ depend only on the state (the model is Markov), a complete solution can be expressed as follows:
- What is the best action to take in any given state?
- A policy, $a=\pi(s)$, is a function telling you, for any state s, what is the best action to take in that state.

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration
- Comparison of value iteration and policy iteration

Utility

The utility of a state, $u(s)$, is defined to be:

- the sum of all current and future rewards that can be achieved if we start in state s,
- ...if we choose the best possible sequence of actions,
- ...and if we average over all possible results of those actions.

Example: Game show

- You've been offered a spot as a contestant in a game show.
- Reward: you receive successively larger prizes for each question you answer correctly, but if you answer any question incorrectly, you lose it all.
- Transition: the questions become harder and harder to answer.
- Actions: after each question, you can decide whether to take another question, or stop.

Example: Game show

Policy:

- If you've correctly answered N -1 questions, should you attempt question QN, or stop?

Example: Game show

Policy $\pi(Q 4)$: If you've correctly answered 3 questions, should you attempt question Q4, or stop?

- If you stop: total reward is $\$ 11,100$
- If you attempt Q4: expected total reward is $\frac{1}{10} \times 61100+\frac{9}{10} \times 0=\$ 6110$ Policy: $\pi(Q 4)=$ stop.

Utility: $u(Q 4)=\$ 11,100$

Example: Game show

Policy $\pi(Q 3)$: If you've correctly answered 2 questions, should you attempt question Q3, or stop?

- If you stop: total reward is $\$ 1,100$
- If you attempt Q3: expected total reward is $\frac{1}{2} \times \$ 11,100+\frac{1}{2} \times 0=\$ 5550$ Policy: $\pi(Q 3)=$ continue.

Utility: $u(Q 3)=\$ 5550$

Example: Game show

Policy $\pi(Q 2)$: If you've correctly answered 1 question, should you attempt question Q2, or stop?

- If you stop: total reward is $\$ 100$
- If you attempt Q2: expected total reward is $\frac{3}{4} \times \$ 5550+\frac{1}{4} \times 0=\$ 4162.50$ Policy: $\pi(Q 2)=$ continue.

Utility: $u(Q 2)=\$ 4162.50$

Example: Game show

Policy $\pi(Q 1)$: If you've correctly answered no questions, then you have nothing to lose, so even though the chance of success is very small, you might as well try it!
Policy: $\pi(Q 1)=$ continue.
Utility: $u(Q 1)=\$ 41.63$

Utility

The utility of a state, $u(s)$, is

- ...the maximum, over all possible sequences of actions, of
- ...the expected value, over all possible results of those actions, of
- ...the total of all future rewards.

$$
u(s)=r(s)+\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left(r\left(s^{\prime}\right)+\max _{a^{\prime}} \sum_{s^{\prime \prime}} P\left(s^{\prime \prime} \mid s^{\prime}, s^{\prime}\right)\left(r\left(s^{\prime \prime}\right)+\cdots \cdots \cdots\right)\right)
$$

Utility

The utility of a state, $u(s)$, is

- ...the maximum, over all possible sequences of actions, of
- ...the expected value, over all possible results of those actions, of
- ...the utility of the resulting state.

$$
u(s)=r(s)+\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration
- Comparison of value iteration and policy iteration

Discount factor

You have just won a contest sponsored by the Galaxia Foundation. They offer you the choice of two options:

- $\$ 60,000$ right now, or...
- \$1000 per year, paid to you and your heirs annually forever.

Which option is better?

Discount factor

- Inflation has averaged 3.8\% annually from 1960 to 2024.
- Equivalently, $\$ 1000$ received one year from now is worth approximately $\$ 962$ today.
- A reward of $\$ 1000$ annually forever (starting today, $t=0$) is equivalent to an immediate reward of

$$
r=\sum_{t=0}^{\infty} 1000(0.962)^{t}=\frac{1000}{1-0.962}=\$ 26,316
$$

We call the factor $\gamma=0.962$ the discount factor.

Discount factor

Why is a dollar tomorrow worth less than a dollar today?

- A dollar will buy less tomorrow
- The person paying you might go out of business
- You might have to go into hiding and become unable to collect
The discount factor, γ, is our model of the unknowable uncertainty of promised future rewards.

Public domain image of J. Wellington Wimpy, the character who popularized the saying "I will gladly pay you Tuesday for a hamburger today."
https://commons.wikimedia.org/wiki/File:Wimpyh otdog.png

The Bellman Equation

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

- The Bellman equation specifies the utility of the current state.
- In solving the Bellman equation, we also find the optimum action, which is the policy.
- However...

The Bellman Equation

$$
\left[\begin{array}{c}
u(1) \\
\vdots \\
u(n)
\end{array}\right]=\left[\begin{array}{c}
r(1) \\
\vdots \\
r(n)
\end{array}\right]+\gamma \max _{a}\left[\begin{array}{ccc}
P(1 \mid 1, a) & \cdots & P(1 \mid n, a) \\
\vdots & \ddots & \vdots \\
P(n \mid 1, a) & \cdots & P(n \mid n, a)
\end{array}\right]\left[\begin{array}{c}
u(1) \\
\vdots \\
u(N)
\end{array}\right]
$$

- If there are n states, then the Bellman equation is n nonlinear equations in n unknowns.
- There is no closed-form solution; we must use an iterative solution

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration
- Comparison of value iteration and policy iteration

Value iteration

The Bellman Equation:

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u\left(s^{\prime}\right)
$$

Value iteration solves the Bellman equation iteratively. In iteration number i, for $i=0,1, \ldots$,

- For all states $s, u_{i}(s)$ is an estimate of $u(s)$
- Start out with $u_{0}(s)=0$ for all states
- In the $i^{\text {th }}$ iteration,

$$
u_{i}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{i-1}\left(s^{\prime}\right)
$$

Value iteration

$$
u_{i}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{i-1}\left(s^{\prime}\right)
$$

Notice that:

- After i iterations, $u_{i}(s)$ has information about the rewards earned in the first i steps after the agent starts the maze
- A policy designed based on $u_{i}(s)$ will act in order to maximize reward in the first i steps of the maze
- In this sense, it's kind of like BFS: each iteration explores farther and farther away from the starting state.

Example: Grid world

Transition model $P\left(s^{\prime} \mid s, a\right)$:

Assume a "loitering penalty" of $r(s)=-0.04$ for all non-terminal states.

Value Iteration: Iteration 1

$$
u_{1}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{0}\left(s^{\prime}\right)
$$

$u_{0}(s)$			
0	0	0	7
0		0	1
0	0	0	0

Value Iteration: Iteration $2 \quad u_{2}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{1}\left(s^{\prime}\right)$
$u_{2}(S)$

-0.08	-0.08	+0.75	
-0.08		-0.08	
-0.08	-0.08	-0.08	-0.08

$r(S)$			
-0.04	-0.04	-0.04	
-0.04		-0.04	
-0.04	-0.04	-0.04	-0.04

$\sum P\left(s^{\prime} \mid s, \text { down }\right) u_{1}\left(s^{\prime}\right)$				$\sum P\left(s^{\prime} \mid s\right.$, up $) u_{1}\left(s^{\prime}\right)$			
-0.04	-0.04	+0.06		- ${ }^{\text {s' }}$ (${ }^{\prime}$	-0.04	+0.06	\cdots
-0.04		-0.14	1	-0.04		-0.14	(1)
-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.81

$\sum_{S^{\prime}} P\left(s^{\prime} \mid s\right.$, left $) u_{1}\left(s^{\prime}\right)$			
-0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.14			

$\sum_{s^{\prime}} P\left(s^{\prime} \mid s\right.$, right $) u_{1}\left(s^{\prime}\right)$			
-0.04	-0.04	+0.79	
-0.04		-0.81	
-0.04	-0.04	-0.04	-0.14

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course instance/147925/assessment/24 03836

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration
- Comparison of value iteration and policy iteration

Method 2: Policy Iteration

- Policy Evaluation: $u_{i}(s)=r(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi_{i}(s)\right) u_{i}\left(s^{\prime}\right)$
- Given a fixed policy $\pi_{i}(s)$,
- Calculate the resulting utility $u_{i}(s)$.
- Policy Improvement: $\pi_{i+1}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{i}\left(s^{\prime}\right)$
- Given a fixed utility $u_{i}(s)$,
- Find an improved $\pi_{i+1}(s)$.
- Unlike Value Iteration, this is guaranteed to converge in a finite number of steps (less than or equal to the number of distinct policies)

Step 1: Policy Evaluation

Bellman equation: n nonlinear equations in n unknowns:

$$
\left[\begin{array}{c}
u(1) \\
\vdots \\
u(n)
\end{array}\right]=\left[\begin{array}{c}
r(1) \\
\vdots \\
r(n)
\end{array}\right]+\gamma \max _{a}\left[\begin{array}{ccc}
P(1 \mid 1, a) & \cdots & P(1 \mid n, a) \\
\vdots & \ddots & \vdots \\
P(n \mid 1, a) & \cdots & P(n \mid n, a)
\end{array}\right]\left[\begin{array}{c}
u(1) \\
\vdots \\
u(N)
\end{array}\right]
$$

Policy Evaluation: n linear equations in n unknowns:

$$
\left[\begin{array}{c}
u_{i}(1) \\
\vdots \\
u_{i}(n)
\end{array}\right]=\left[\begin{array}{c}
r(1) \\
\vdots \\
r(n)
\end{array}\right]+\gamma\left[\begin{array}{ccc}
P\left(1 \mid 1, \pi_{i}(1)\right) & \cdots & P\left(1 \mid n, \pi_{i}(n)\right) \\
\vdots & \ddots & \vdots \\
P\left(n \mid 1, \pi_{i}(1)\right) & \cdots & P\left(n \mid n, \pi_{i}(n)\right)
\end{array}\right]\left[\begin{array}{c}
u_{i}(1) \\
\vdots \\
u_{i}(N)
\end{array}\right]
$$

The difference is that policy evaluation is linear, so it can be solved by inverting a matrix: $\boldsymbol{u}_{i}=\left(\boldsymbol{I}-\gamma \boldsymbol{P}_{i}\right)^{-1} \boldsymbol{r}$.

Example: Grid World

Policy Evaluation: $u_{i}(s)=r(s)+\gamma \sum_{s \prime} P\left(s^{\prime} \mid s, \pi_{i}(s)\right) u_{i}\left(s^{\prime}\right)$

- Assume the initial policy is $\pi_{1}(s)=$ "Go Right" for all states
- Solve the linear equations to find $u_{1}(s)$

Policy Improvement

Policy Evaluation: $u_{i}(s)=r(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi_{i}(s)\right) u_{i}\left(s^{\prime}\right)$
Policy Improvement: $\pi_{i+1}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{i}\left(s^{\prime}\right)$

$\pi_{2}(s)$			
\rightarrow	\rightarrow	\rightarrow	∇
\uparrow		\uparrow	$\boldsymbol{\imath}$
\uparrow	\rightarrow	\uparrow	\uparrow

$u_{1}(S)$			
+0.50 +0.69 +0.74 -0.65 -0.90 -1.40 -1.44 -1.39 -1.40			

$\pi_{1}(s)$			
\rightarrow	\rightarrow	\rightarrow	V
\rightarrow		\rightarrow	
\rightarrow	\rightarrow	\rightarrow	\rightarrow

Outline

- Problem statement
- Utility
- The discount factor
- Value Iteration
- Policy Iteration
- Comparison of value iteration and policy iteration

Value iteration

Optimal utilities with discount factor 1
(Result of value iteration)

3	0.812	0.868	0.918
1			
0.762		0.660	$\boxed{-1}$
1	2	3	4

Final policy

Comparison of value iteration and policy iteration

- Bellman equation is n equations in n unknowns; cannot be solved in closed form, needs an iterative solution
- Value iteration
- Behaves like BFS: each iteration looks one step farther from the start node
- Usually converges exponentially fast to the correct policy
- However, if there are loops possible in the maze, may never converge exactly
- Policy iteration
- Kind of like gradient descent: evaluate a policy, then improve it
- Guaranteed to converge in a finite number of steps
- Harder to implement, and might take a while before it starts to converge

Summary

- Bellman equation:

$$
u(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

- Value iteration:

$$
u_{i}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u_{i-1}\left(s^{\prime}\right)
$$

- Policy iteration:

$$
\begin{gathered}
u_{i}(s)=r(s)+\gamma \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, \pi_{i}(s)\right) u_{i}\left(s^{\prime}\right) \\
\pi_{i+1}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u_{i}\left(s^{\prime}\right)
\end{gathered}
$$

