
Lecture 19: A*
Search

Mark Hasegawa-Johnson
3/2024

Lecture slides CC0

By SRI International - SRI International, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17294520

https://commons.wikimedia.org/w/index.php?curid=17294520

Contents

• A* search: Using a heuristic to help choose which node to expand
• Admissible search
• How to design a heuristic
• Consistent search

Why is BFS slow?

• Before we expand a node that is
𝑑 steps from the start,
• … we must expand all nodes that

are 𝑑 − 1 steps from the start.
• Result: complexity is 𝑂{𝑏!}

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Speeding up BFS and
Dijsktra’s algorithm
(the intuition)

• Intuitively, this node, which is
farther from the goal,
• …should not have been

expanded before this node,
because this one is closer to the
goal.

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

𝑝
𝑞

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Why was Dijkstra
slow?
• Dijkstra’s algorithm expanded

this node first because its
distance from the START node is
only

𝑔 𝑝 = 15
• This node is expanded second,

because its distance from the
START node is

𝑔 𝑟 = 16

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

𝑝
𝑟

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Fixing Dijkstra’s
algorithm
Instead of sorting nodes by how far
they are from Start, can we sort
nodes based on the total length of
the best path that goes through that
node?
• This node has

𝑔 𝑝 = 15
ℎ(𝑝) = 16

𝑔(𝑝) + ℎ(𝑝) = 31
• This node has

𝑔 𝑟 = 16
ℎ(𝑟) = 13

𝑔(𝑟) + ℎ(𝑟) = 29
…so this node should be expanded
first. CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

𝑝
𝑟

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

A* search: Estimate 𝑓(𝑝), the total cost of the
best path that goes through node 𝑝
• DEFINE: 𝑔(𝑝) = cost of the best path from the START node to node 𝑝,

𝑔(𝑝) = 𝑑(𝑆𝑡𝑎𝑟𝑡, 𝑝)
• DEFINE: ℎ(𝑝) = heuristic (approximate) estimate of the distance from
𝑝 to 𝐺𝑜𝑎𝑙. Finding ℎ(𝑝) must be less expensive than finding the true
distance 𝑑(𝑝, 𝐺𝑜𝑎𝑙)! So it’s not exactly equal, only approximately:

ℎ(𝑝) ≈ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)
• RESULT: estimate of the total length of the path through node 𝒑 is

𝑓(𝑝) 	= 	𝑔(𝑝) + ℎ(𝑝) ≈ 𝑑(𝑆𝑡𝑎𝑟𝑡, 𝑝) + 𝑑(𝑝, 𝐺𝑜𝑎𝑙)

A* Search
The A* algorithm is just like
Dijkstra’s algorithm, except that,
• At each iteration,
• instead of expanding the node

with the lowest 𝑔(𝑝),
• …expand the node with the

lowest 𝑔(𝑝) + ℎ(𝑝)

(In this example, ℎ(𝑥) =Euclidean
distance to Goal)

By Subh83 - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=14916867

https://commons.wikimedia.org/w/index.php?curid=14916867

Contents

• A* search: Using a heuristic to help choose which node to expand
• Admissible search
• How to design a heuristic
• Consistent search

A* search: Key concepts

• 𝑓 𝑛 = distance of the shortest path from start to goal that passes
through node n
• 𝑔 𝑛 = distance of the shortest path from start to node n
• ℎ 𝑛 = distance of the shortest path from node n to goal

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

A* search: Key concepts
If nodes are sorted in increasing order of 𝑓 𝑛 , then A* finds the
shortest path to goal without evaluating any extra nodes.

Start:
𝑓 = 3 𝑓 = 4 𝑓 = 5 𝑓 = 6

𝑓 = 4 𝑓 = 3 𝑓 = 4 𝑓 = 5

𝑓 = 5 𝑓 = 4 𝑓 = 3 𝑓 = 4

𝑓 = 6 𝑓 = 5 𝑓 = 4 Goal:
𝑓 = 3

=open

=closed

A* search: Key concepts
If nodes are sorted in increasing order of 𝑓 𝑛 , then A* finds the
shortest path to goal without evaluating any extra nodes.

Start:
𝑓 = 3 𝑓 = 4 𝑓 = 5 𝑓 = 6

𝑓 = 4 𝑓 = 3 𝑓 = 4 𝑓 = 5

𝑓 = 5 𝑓 = 4 𝑓 = 3 𝑓 = 4

𝑓 = 6 𝑓 = 5 𝑓 = 4 Goal:
𝑓 = 3

=open

=closed

A* search: Key concepts
If nodes are sorted in increasing order of 𝑓 𝑛 , then A* finds the
shortest path to goal without evaluating any extra nodes.

Start:
𝑓 = 3 𝑓 = 4 𝑓 = 5 𝑓 = 6

𝑓 = 4 𝑓 = 3 𝑓 = 4 𝑓 = 5

𝑓 = 5 𝑓 = 4 𝑓 = 3 𝑓 = 4

𝑓 = 6 𝑓 = 5 𝑓 = 4 Goal:
𝑓 = 3

=open

=closed

A* search: Key concepts
If nodes are sorted in increasing order of 𝑓 𝑛 , then A* finds the
shortest path to goal without evaluating any extra nodes.

Start:
𝑓 = 3 𝑓 = 4 𝑓 = 5 𝑓 = 6

𝑓 = 4 𝑓 = 3 𝑓 = 4 𝑓 = 5

𝑓 = 5 𝑓 = 4 𝑓 = 3 𝑓 = 4

𝑓 = 6 𝑓 = 5 𝑓 = 4 Goal:
𝑓 = 3

=open

=closed

The elephant in the room

The only way to know h(n)
exactly is to solve the
search problem.

A* search: Key concepts

• ?𝑓 𝑛 = estimate of the distance of the shortest path from start to
goal that passes through node n
• 𝑔 𝑛 = distance of the shortest path from start to node n
• @ℎ 𝑛 = estimate of the distance of the shortest path from node n to

goal

?𝑓 𝑛 = 𝑔 𝑛 + @ℎ(𝑛)

A difficulty: what is @ℎ 𝑛 ? Can it be just anything?

Can %ℎ 𝑛 be just anything?
No. If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛 and we allow @ℎ 𝑛 	to be just anything,
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed

Can %ℎ 𝑛 be just anything?
No. If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛 and we allow @ℎ 𝑛 	to be just anything,
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed

Can %ℎ 𝑛 be just anything?
No. If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛 and we allow @ℎ 𝑛 	to be just anything,
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed

Can %ℎ 𝑛 be just anything?
No. If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛 and we allow @ℎ 𝑛 	to be just anything,
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed

Can %ℎ 𝑛 be just anything?
No. If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛 and we allow @ℎ 𝑛 	to be just anything,
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed

Can %ℎ 𝑛 be just anything?
No. If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛 and we allow @ℎ 𝑛 	to be just anything,
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed

Can %ℎ 𝑛 be just anything?
No. If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛 and we allow @ℎ 𝑛 	to be just anything,
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed

Why did it fail?
• ?𝑓 of the goal node was correctly

estimated, but…
• …some of the nodes on the shortest

path had unrealistically high values
of ?𝑓, which prevented us evaluating
the shortest path.
• Solution: Make sure that all nodes

on the shortest path have ?𝑓 𝑛 ≤
𝑓 𝑛 = 𝑓(Goal)

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

A* search: Key concepts

• ?𝑓 𝑛 = F𝑔 𝑛 + @ℎ 𝑛 is estimated cost of shortest path from start to
goal through 𝑛. If ?𝑓 𝑛 ≤ 𝑓 𝑛 for nodes on the shortest path, then
those will get evaluated before the goal, and A* will find the shortest
path.
• F𝑔 𝑛 = shortest path so far from start to 𝑛. Might be longer than the

true shortest path, F𝑔 𝑛 ≥ 𝑔(𝑛).
• If we can guarantee @ℎ 𝑛 ≤ ℎ(𝑛) for all nodes, then for every node

on the shortest path, at the time it is expanded, F𝑔 𝑛 = 𝑔(𝑛), and
therefore:

F𝑔 𝑛 + @ℎ 𝑛 ≤ 𝑔 𝑛 + ℎ(𝑛)

Admissibility: !ℎ 𝑛 ≤ ℎ 𝑛 guarantees %𝑓 𝑛 ≤ 𝑓(𝑛)

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

Admissibility: !ℎ 𝑛 ≤ ℎ 𝑛 guarantees %𝑓 𝑛 ≤ 𝑓(𝑛)

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔: 2
/ℎ: 0

+𝑔: 2
/ℎ: 2

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

Admissibility: !ℎ 𝑛 ≤ ℎ 𝑛 guarantees %𝑓 𝑛 ≤ 𝑓(𝑛)

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔: 2
/ℎ: 0

+𝑔: 2
/ℎ: 2

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔: 3
/ℎ: 0

+𝑔: 3
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

Admissibility: !ℎ 𝑛 ≤ ℎ 𝑛 guarantees %𝑓 𝑛 ≤ 𝑓(𝑛)

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔: 2
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔: 2
/ℎ: 0

+𝑔: 2
/ℎ: 2

+𝑔: 2
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔: 3
/ℎ: 0

+𝑔: 3
/ℎ: 0

+𝑔: 4
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

Admissibility: !ℎ 𝑛 ≤ ℎ 𝑛 guarantees %𝑓 𝑛 ≤ 𝑓(𝑛)

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔: 2
/ℎ: 2

+𝑔: 3
/ℎ: 2

+𝑔: 2
/ℎ: 0

+𝑔: 2
/ℎ: 2

+𝑔: 2
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔: 3
/ℎ: 0

+𝑔: 3
/ℎ: 0

+𝑔: 4
/ℎ: 0

+𝑔: 3
/ℎ: 0

=open

=closed

Admissibility: !ℎ 𝑛 ≤ ℎ 𝑛 guarantees %𝑓 𝑛 ≤ 𝑓(𝑛)

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔: 2
/ℎ: 2

+𝑔: 3
/ℎ: 2

+𝑔: 2
/ℎ: 0

+𝑔: 2
/ℎ: 2

+𝑔: 2
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔: 3
/ℎ: 0

+𝑔: 3
/ℎ: 0

+𝑔: 4
/ℎ: 0

+𝑔: 3
/ℎ: 0

=open

=closed

A* search algorithm

Initialize: compute @ℎ(𝑛) for all nodes in some manner that guarantees
@ℎ 𝑛 ≤ ℎ 𝑛 . Set F𝑔 𝑠 = 0.
Iterate:
1. Choose the open node, 𝑛, with the lowest ?𝑓 = F𝑔 + @ℎ.
2. If 𝑛 ∈Goal, terminate. We have found the shortest path!
3. For all neighbor nodes 𝑚 ∈ Γ(𝑛):

1. If 𝑚 is still open, set %𝑔(𝑚) = min(%𝑔(𝑚), %𝑔(𝑛) + ℎ(𝑛,𝑚))
2. If 𝑚 is already closed but %𝑔(𝑛) + ℎ(𝑛,𝑚) < %𝑔(𝑚), re-open it

Try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/24
03277

https://us.prairielearn.com/pl/course_instance/147925/assessment/2403277
https://us.prairielearn.com/pl/course_instance/147925/assessment/2403277

Contents

• A* search: Using a heuristic to help choose which node to expand
• Admissible search
• How to design a heuristic
• Consistent search

Heuristics: Easy and Hard

• The easy heuristic: Notice that @ℎ 𝑛 = 0 always satisfies @ℎ 𝑛 ≤
ℎ 𝑛 !
• Using 2ℎ 𝑛 = 0 means sorting by 4𝑓 𝑛 = %𝑔 𝑛 + 0 = %𝑔 𝑛
• This is Dijkstra’s algorithm!

• All other heuristics are hard
• Must be designed for each search problem, separately, based on your

knowledge about the problem
• Is it worth it?

Computational complexity of A*

Notice: the number of nodes we expand is the number that have
?𝑓 𝑛 < 𝑔(Goal). The larger @ℎ 𝑛 is, the less computation will be

required to find the optimal path. Therefore, we want to design @ℎ 𝑛
to be as large as possible, subject to the constraints that
• We can somehow prove that @ℎ 𝑛 ≤ ℎ(𝑛)
• Calculating @ℎ 𝑛 for all nodes is less computationally expensive than

it would be to just use Dijkstra’s algorithm

Designing a heuristic by relaxing constraints
• Often, good heuristics are computed by eliminating the constraints that

make the problem hard
• Maze Example: If we just eliminate the walls, then ℎ(𝑛) would equal the

Chebyshev distance from 𝑛 to Goal, i.e.,
@ℎ 𝑛 = max 𝑥"#$% − 𝑥& , 𝑦"#$% − 𝑦&

@ℎ 𝑛 = 10 ℎ 𝑛 = 15

Example: the
15-puzzle

• For another example, consider the 15-puzzle: Shift one tile at a time
until the puzzle reaches the goal state.
• What makes it hard is that you can’t move the 1-tile to its correct

square, because the 12-tile is in the way.

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

Example: the
15-puzzle

We can design a heuristic (which makes A* search much faster) by just
ignoring the constraint.

ℎ 𝑛 = Q
'(%)*+

+, #squares	tile	would
have	to	move	if	there	were	no	

other	tiles	in	the	way

Since we can’t really move the tiles in that way, we are guaranteed that
@ℎ(𝑛) ≤ ℎ(𝑛)

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

Example: the
15-puzzle

BFS solution of the 15-puzzle expands 54,000,000,000 nodes.
A* solution, using the following heuristic, expands 1641 nodes,
i.e., 0.000003% of the computational cost.

ℎ 𝑛 = Q
'(%)*+

+, #squares	tile	would
have	to	move	if	there	were	no	

other	tiles	in	the	way

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

Cost of A*
search

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

The cost of A* search is still 𝒪 𝑏! in the worst case, but the heuristic
means that we only expand nodes with ?𝑓 𝑛 < 𝑔 Goal , which, in the
typical case, may be much fewer than 𝑏!.
• In this example, BFS has complexity 𝒪 4! .
• A* has complexity close to 1.13 !.

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

Contents

• A* search: Using a heuristic to help choose which node to expand
• Admissible search
• How to design a heuristic
• Consistent search

A* search algorithm

Initialize: compute @ℎ(𝑛) for all nodes in some manner that guarantees
@ℎ 𝑛 ≤ ℎ 𝑛 . Set F𝑔 𝑠 = 0.
Iterate:
1. Choose the open node, 𝑛, with the lowest ?𝑓 = F𝑔 + @ℎ.
2. If 𝑛 ∈Goal, terminate. We have found the shortest path!
3. For all neighbor nodes 𝑚 ∈ Γ(𝑛):

1. If 𝑚 is still open, set %𝑔(𝑚) = min(%𝑔(𝑚), %𝑔(𝑛) + ℎ(𝑛,𝑚))
2. If 𝑚 is already closed but %𝑔(𝑛) + ℎ(𝑛,𝑚) < %𝑔(𝑚), re-open it

What if we don’t want to
have to do this?

Admissible vs. Consistent Heuristics

• Admissible heuristic: Guarantee that, the first time we find the Goal
node, we will find it with minimum cost:

@ℎ 𝑛 ≤ ℎ 𝑛
• Consistent heuristic: Guarantee that, the first time we find node 𝑚,

we will find it with minimum cost:
@ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚

Example

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

In this problem, all neighbors have ℎ(𝑚, 𝑛) = 1. This heuristic does not
satisfy	 @ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚 , so we might have to re-open nodes.

Example

+𝑔: 0
/ℎ: 0

+𝑔: 1

!𝒉: 𝟏
+𝑔:∞

!𝒉: 𝟐
+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1

!𝒉: 𝟏
+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 0

+𝑔:∞

!𝒉: 𝟏
+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

In this problem, all neighbors have ℎ(𝑚, 𝑛) = 1. This heuristic sastisfies	
@ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚 , so we will never have to re-open a closed node.

Conclusions

• A* is admissible if you use an admissible heuristic, and optimal (lower
computation than any other exact search algorithm!) if you use a
consistent heuristic.
• Admissible: @ℎ 𝑛 ≤ ℎ 𝑛
• Consistent: @ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚
• @ℎ 𝑛 = 0 is a valid heuristic (Dijkstra’s algorithm), but usually we

want to invent an @ℎ 𝑛 as large as we can, subject to one of the two
constraints above (depending on whether or not we want to re-open
closed nodes).

