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Why is BFS slow?

• Before we expand a node that is 
𝑑 steps from the start,
• … we must expand all nodes that 

are 𝑑 − 1 steps from the start.
• Result: complexity is 𝑂{𝑏!}

CC-SA 3.0, 
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif
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Speeding up BFS and 
Dijsktra’s algorithm 
(the intuition)

• Intuitively, this node, which is 
farther from the goal,
• …should not have been 

expanded before this node, 
because this one is closer to the 
goal.

CC-SA 3.0, 
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

𝑝
𝑞

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif


Why was Dijkstra 
slow?
• Dijkstra’s algorithm expanded 

this node first because its 
distance from the START node is 
only

𝑔 𝑝 = 15
• This node is expanded second, 

because its distance from the 
START node is 

𝑔 𝑟 = 16

CC-SA 3.0, 
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif
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Fixing Dijkstra’s 
algorithm
Instead of sorting nodes by how far 
they are from Start, can we sort 
nodes based on the total length of 
the best path that goes through that 
node? 
• This node has

𝑔 𝑝 = 15
ℎ(𝑝) = 16

𝑔(𝑝) + ℎ(𝑝) = 31
• This node has 

𝑔 𝑟 = 16
ℎ(𝑟) = 13

𝑔(𝑟) + ℎ(𝑟) = 29
…so this node should be expanded 
first. CC-SA 3.0, 

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif
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A* search: Estimate 𝑓(𝑝), the total cost of the 
best path that goes through node 𝑝
• DEFINE: 𝑔(𝑝) = cost of the best path from the START node to node 𝑝, 

𝑔(𝑝) = 𝑑(𝑆𝑡𝑎𝑟𝑡, 𝑝)
• DEFINE: ℎ(𝑝) = heuristic (approximate) estimate of the distance from 
𝑝 to 𝐺𝑜𝑎𝑙.  Finding ℎ(𝑝) must be less expensive than finding the true 
distance 𝑑(𝑝, 𝐺𝑜𝑎𝑙)!  So it’s not exactly equal, only approximately:

ℎ(𝑝) ≈ 𝑑(𝑝, 𝐺𝑜𝑎𝑙)
• RESULT: estimate of the total length of the path through node 𝒑 is

𝑓(𝑝) 	= 	𝑔(𝑝) + ℎ(𝑝) ≈ 𝑑(𝑆𝑡𝑎𝑟𝑡, 𝑝) + 𝑑(𝑝, 𝐺𝑜𝑎𝑙)



A* Search
The A* algorithm is just like 
Dijkstra’s algorithm, except that,
• At each iteration,
• instead of expanding the node 

with the lowest 𝑔(𝑝),
• …expand the node with the 

lowest 𝑔(𝑝) + ℎ(𝑝)

(In this example, ℎ(𝑥) =Euclidean 
distance to Goal)

By Subh83 - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=14916867
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A* search: Key concepts

• 𝑓 𝑛 = distance of the shortest path from start to goal that passes 
through node n
• 𝑔 𝑛 = distance of the shortest path from start to node n
• ℎ 𝑛 = distance of the shortest path from node n to goal

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)



A* search: Key concepts
If nodes are sorted in increasing order of 𝑓 𝑛 , then A* finds the 
shortest path to goal without evaluating any extra nodes.

Start:
𝑓 = 3 𝑓 = 4 𝑓 = 5 𝑓 = 6

𝑓 = 4 𝑓 = 3 𝑓 = 4 𝑓 = 5

𝑓 = 5 𝑓 = 4 𝑓 = 3 𝑓 = 4

𝑓 = 6 𝑓 = 5 𝑓 = 4 Goal:
𝑓 = 3

=open

=closed
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The elephant in the room

The only way to know h(n) 
exactly is to solve the 
search problem.



A* search: Key concepts

• ?𝑓 𝑛 = estimate of the distance of the shortest path from start to 
goal that passes through node n
• 𝑔 𝑛 = distance of the shortest path from start to node n
• @ℎ 𝑛 = estimate of the distance of the shortest path from node n to 

goal

?𝑓 𝑛 = 𝑔 𝑛 + @ℎ(𝑛)

A difficulty: what is @ℎ 𝑛 ?  Can it be just anything?



Can %ℎ 𝑛   be just anything?
No.  If ?𝑓 𝑛 = 𝑔 𝑛 + @ℎ 𝑛  and we allow @ℎ 𝑛 	to be just anything, 
then the A* search algorithm is not admissible.

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3

=open

=closed
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Why did it fail?
• ?𝑓 of the goal node was correctly 

estimated, but…
• …some of the nodes on the shortest 

path had unrealistically high values 
of ?𝑓, which prevented us evaluating 
the shortest path.
• Solution: Make sure that all nodes 

on the shortest path have ?𝑓 𝑛 ≤
𝑓 𝑛 = 𝑓(Goal)

Start:
'𝑓 = 3

'𝑓 = 7 '𝑓 = 8 '𝑓 = 6

'𝑓 = 4 '𝑓 = 6 '𝑓 = 8 '𝑓 = 9

'𝑓 = 4 '𝑓 = 9 '𝑓 = 6 '𝑓 = 8

'𝑓 = 4 '𝑓 = 4 '𝑓 = 4 Goal:
'𝑓 = 3



A* search: Key concepts

• ?𝑓 𝑛 = F𝑔 𝑛 + @ℎ 𝑛  is estimated cost of shortest path from start to 
goal through 𝑛.  If ?𝑓 𝑛 ≤ 𝑓 𝑛  for nodes on the shortest path, then 
those will get evaluated before the goal, and A* will find the shortest 
path.
• F𝑔 𝑛 = shortest path so far from start to 𝑛.  Might be longer than the 

true shortest path, F𝑔 𝑛 ≥ 𝑔(𝑛).
• If we can guarantee @ℎ 𝑛 ≤ ℎ(𝑛) for all nodes, then for every node 

on the shortest path, at the time it is expanded, F𝑔 𝑛 = 𝑔(𝑛), and 
therefore:

F𝑔 𝑛 + @ℎ 𝑛 ≤ 𝑔 𝑛 + ℎ(𝑛)



Admissibility: !ℎ 𝑛 ≤ ℎ 𝑛  guarantees %𝑓 𝑛 ≤ 𝑓(𝑛)

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3
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+𝑔:∞
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+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed
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A* search algorithm

Initialize: compute @ℎ(𝑛) for all nodes in some manner that guarantees 
@ℎ 𝑛 ≤ ℎ 𝑛 . Set F𝑔 𝑠 = 0.
Iterate:
1. Choose the open node, 𝑛, with the lowest ?𝑓 = F𝑔 + @ℎ.
2. If 𝑛 ∈Goal, terminate.  We have found the shortest path!
3. For all neighbor nodes 𝑚 ∈ Γ(𝑛):

1. If 𝑚 is still open, set %𝑔(𝑚) = min( %𝑔(𝑚), %𝑔(𝑛) + ℎ(𝑛,𝑚))
2. If 𝑚 is already closed but %𝑔(𝑛) + ℎ(𝑛,𝑚) < %𝑔(𝑚), re-open it



Try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/24
03277

https://us.prairielearn.com/pl/course_instance/147925/assessment/2403277
https://us.prairielearn.com/pl/course_instance/147925/assessment/2403277
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Heuristics: Easy and Hard

• The easy heuristic: Notice that @ℎ 𝑛 = 0 always satisfies @ℎ 𝑛 ≤
ℎ 𝑛 !
• Using 2ℎ 𝑛 = 0 means sorting by 4𝑓 𝑛 = %𝑔 𝑛 + 0 = %𝑔 𝑛
• This is Dijkstra’s algorithm!

• All other heuristics are hard
• Must be designed for each search problem, separately, based on your 

knowledge about the problem
• Is it worth it?



Computational complexity of A*

Notice: the number of nodes we expand is the number that have 
?𝑓 𝑛 < 𝑔(Goal). The larger @ℎ 𝑛  is, the less computation will be 

required to find the optimal path.  Therefore, we want to design @ℎ 𝑛  
to be as large as possible, subject to the constraints that
• We can somehow prove that @ℎ 𝑛 ≤ ℎ(𝑛)
• Calculating @ℎ 𝑛  for all nodes is less computationally expensive than 

it would be to just use Dijkstra’s algorithm



Designing a heuristic by relaxing constraints
• Often, good heuristics are computed by eliminating the constraints that 

make the problem hard 
• Maze Example: If we just eliminate the walls, then ℎ(𝑛) would equal the 

Chebyshev distance from 𝑛 to Goal, i.e.,
@ℎ 𝑛 = max 𝑥"#$% − 𝑥& , 𝑦"#$% − 𝑦&

@ℎ 𝑛 = 10 ℎ 𝑛 = 15



Example: the 
15-puzzle

• For another example, consider the 15-puzzle: Shift one tile at a time 
until the puzzle reaches the goal state.
• What makes it hard is that you can’t move the 1-tile to its correct 

square, because the 12-tile is in the way.

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg


Example: the 
15-puzzle

We can design a heuristic (which makes A* search much faster) by just 
ignoring the constraint.

ℎ 𝑛 = Q
'(%)*+

+, #squares	tile	would
have	to	move	if	there	were	no	

other	tiles	in	the	way

Since we can’t really move the tiles in that way, we are guaranteed that
@ℎ(𝑛) ≤ ℎ(𝑛)

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg


Example: the 
15-puzzle

BFS solution of the 15-puzzle expands 54,000,000,000 nodes.
A* solution, using the following heuristic, expands 1641 nodes,
i.e., 0.000003% of the computational cost.

ℎ 𝑛 = Q
'(%)*+

+, #squares	tile	would
have	to	move	if	there	were	no	

other	tiles	in	the	way

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg


Cost of A* 
search

Node 𝑝 Transition

…
Goal

…
Public Domain, https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg

The cost of A* search is still 𝒪 𝑏!  in the worst case, but the heuristic 
means that we only expand nodes with ?𝑓 𝑛 < 𝑔 Goal , which, in the 
typical case, may be much fewer than 𝑏!.
• In this example, BFS has complexity 𝒪 4! .
• A* has complexity close to 1.13 !.

https://commons.wikimedia.org/wiki/File:15-puzzle_magical.svg
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A* search algorithm

Initialize: compute @ℎ(𝑛) for all nodes in some manner that guarantees 
@ℎ 𝑛 ≤ ℎ 𝑛 . Set F𝑔 𝑠 = 0.
Iterate:
1. Choose the open node, 𝑛, with the lowest ?𝑓 = F𝑔 + @ℎ.
2. If 𝑛 ∈Goal, terminate.  We have found the shortest path!
3. For all neighbor nodes 𝑚 ∈ Γ(𝑛):

1. If 𝑚 is still open, set %𝑔(𝑚) = min( %𝑔(𝑚), %𝑔(𝑛) + ℎ(𝑛,𝑚))
2. If 𝑚 is already closed but %𝑔(𝑛) + ℎ(𝑛,𝑚) < %𝑔(𝑚), re-open it

What if we don’t want to 
have to do this?



Admissible vs. Consistent Heuristics

• Admissible heuristic: Guarantee that, the first time we find the Goal 
node, we will find it with minimum cost:

@ℎ 𝑛 ≤ ℎ 𝑛
• Consistent heuristic: Guarantee that, the first time we find node 𝑚, 

we will find it with minimum cost:
@ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚



Example

+𝑔: 0
/ℎ: 0

+𝑔: 1
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

In this problem, all neighbors have ℎ(𝑚, 𝑛) = 1.  This heuristic does not 
satisfy	 @ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚 , so we might have to re-open nodes.



Example

+𝑔: 0
/ℎ: 0

+𝑔: 1

!𝒉: 𝟏
+𝑔:∞

!𝒉: 𝟐
+𝑔:∞
/ℎ: 3

+𝑔: 1
/ℎ: 0

+𝑔: 1

!𝒉: 𝟏
+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 2

+𝑔:∞
/ℎ: 0

+𝑔:∞

!𝒉: 𝟏
+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 1

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

+𝑔:∞
/ℎ: 0

=open

=closed

In this problem, all neighbors have ℎ(𝑚, 𝑛) = 1.  This heuristic sastisfies	
@ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚 , so we will never have to re-open a closed node.



Conclusions

• A* is admissible if you use an admissible heuristic, and optimal (lower 
computation than any other exact search algorithm!) if you use a 
consistent heuristic.
• Admissible:   @ℎ 𝑛 ≤ ℎ 𝑛
• Consistent: @ℎ 𝑛 − @ℎ 𝑚 ≤ ℎ 𝑛,𝑚
• @ℎ 𝑛 = 0 is a valid heuristic (Dijkstra’s algorithm), but usually we 

want to invent an @ℎ 𝑛  as large as we can, subject to one of the two 
constraints above (depending on whether or not we want to re-open 
closed nodes).


