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How to take the exam

• Go to https://cbtf.Illinois.edu, choose CS440/ECE448 exam 1, and 
register the time and location where you will take the exam
• If you can’t register at cbtf.Illinois.edu, contact us on campuswire

BEFORE 1pm Monday

https://cbtf.illinois.edu/


How to take the exam

• Show up on time at the appointed location!  It’s possible to 
reschedule if you miss an exam, but it will require you to go to a CBTF 
location to apply in person for permission to do so.
• Bring: Pencils and erasers
• CBTF will provide: Scratch paper
• The exam will have attached: a PDF formula sheet, which is also 

available now on the course web page, so you can see what will be on 
it



Exam format

• The exam will have 8 questions, each worth 13 points --- 104 points 
total.  If you get 104 out of 104, that is worth 100%.
• 100/104 = 96%.

• Each question will be multiple choice, very similar to the daily quiz 
questions in class
• You will get full credit (13 points) if you get it right on the first try
• If not, try again (and again and again and again, if necessary), for 

reduced credit
• E.g., if a question has 6 options, then you get 13,9,7,5,3,1 points for getting 

the correct answer on the 1st/2nd/3rd/4th/5th/6th try.



Exam format

• Formula sheet
• Questions to answer
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Topics

• Bayesian networks – 5 questions
• probability, decision theory, naïve Bayes, Bayes nets, HMMs, fairness

• Neural networks – 3 questions
• learning, regression, perceptron, softmax, multilayer, vision, CNN



Probability
• Probability Mass and Probability Density

𝑃 𝑋 = 𝑥 = Pr 𝑋 = 𝑥 … or … 𝑃 𝑋 = 𝑥 =
𝑑
𝑑𝑥
Pr 𝑋 ≤ 𝑥

• Jointly random variables
𝑃 𝑋 = 𝒙 = 𝑃 𝑋! = 𝑥!, ⋯ , 𝑋" = 𝑥"

• Conditional Probability and Independence
𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃 𝑋 𝑌 = 𝑃 𝑋 ⟺ 𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌)
• Expectation

𝐸 𝑓(𝑋, 𝑌) =4
#,%

𝑓 𝑥, 𝑦 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) … or …

𝐸 𝑓(𝑋, 𝑌) = 6
&'

'
𝑓 𝑥, 𝑦 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 𝑑𝑥𝑑𝑦

• Mean, Variance and Covariance
Σ = 𝐸 𝑋 − 𝐸[𝑋] 𝑋 − 𝐸[𝑋] (



Decision theory
• Minimum Probability of Error = Maximum A Posteriori:

𝑓 𝑥 = argmax
%

𝑃 𝑌 = 𝑦|𝑋 = 𝑥

• Bayes Error Rate:

Bayes Error Rate =4
#

𝑃 𝑋 = 𝑥 min
%
𝑃(𝑌 ≠ 𝑦|𝑋 = 𝑥)

• Confusion Matrix, Precision & Recall, Sensitivity & Selectivity

Precision = 𝑃(𝑌 = 1|𝑓 𝑋 = 1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Sensitivity = Recall = 𝑃(𝑓(𝑋) = 1|𝑌 = 1) =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Selectivity = 𝑃(𝑓(𝑋) = 0|𝑌 = 0) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
• Train, Dev, and Test Corpora



Naïve Bayes
• MPE = MAP with Bayes’ rule:

𝑓(𝑥) = argmax
!

log 𝑃(𝑌 = 𝑦) + log 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)

• naïve Bayes:

log 𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈ <
"#$

%

log 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)

• maximum likelihood parameter estimation:

𝑃(𝑊 = 𝑤"|𝑌 = 𝑦) =
Count(𝑤" , 𝑦)

∑&∈( Count(𝑣, 𝑦)
• Laplace Smoothing:

𝑃 𝑊 = 𝑤"|𝑌 = 𝑦 =

𝑘 + Count(𝑤" , 𝑦)
𝑘 + ∑&∈( 𝑘 + Count(𝑣, 𝑦)

𝑊 = 𝑂𝑂𝑉 is possible

𝑘 + Count(𝑤" , 𝑦)
∑&∈( 𝑘 + Count(𝑣, 𝑦)

otherwise



Bayesian Networks
• Bayesian classifier: 𝑓(𝑥) = argmax

!
𝑃(𝑌 = 𝑦|𝑋 = 𝑥)

• Bayesian network: A better way to represent knowledge

• Each variable is a node.

• An arrow between two nodes means that the child depends on the parent.

• Inference using a Bayesian network

𝑃 𝐵 = ⊤, 𝐽 = ⊤ = 4
"#⊤

⊥
4
$#⊤

⊥
𝑃(𝐵 = ⊤)𝑃 𝐸 = 𝑒 𝑃 𝐴 = 𝑎 𝐵 = ⊤, 𝐸 = 𝑒 𝑃 𝐽 = ⊤ 𝐴 = 𝑎

• Key ideas: Independence and Conditional independence

• Independent = no common ancestors

• Conditionally independent = (1) no common descendants, and (2) none of the descendants 
of one are ancestors of the other



HMM: Viterbi 
Algorithm

Trellis is used to find the 
most likely path.

For example:

𝑣O(𝑗) = max
P
𝑣O&!(𝑖) 𝑎P,Q𝑏Q 𝒙O

𝜓O(𝑗)
= argmax

P
𝑣O&!(𝑖) 𝑎P,Q𝑏Q 𝒙O
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Three Definitions of Fairness

• Demographic Parity: 𝑃 𝑓(𝑋)|𝐴 = 1 = 𝑃 𝑓(𝑋)|𝐴 = 0

• Equal Odds: 𝑃 𝑓(𝑋)|𝑌, 𝐴 = 1 = 𝑃 𝑓(𝑋)|𝑌, 𝐴 = 0

• Predictive Parity: 𝑃 𝑌|𝑓(𝑋), 𝐴 = 1 = 𝑃 𝑌|𝑓(𝑋), 𝐴 = 0

Those three things can only all be true, all at the same time, if:

• 𝑃 𝑌|𝐴 = 1 = 𝑃 𝑌|𝐴 = 0



Learning
• Biological inspiration:  Neurons that fire together wire together.  

Given enough training examples (𝑥: , 𝑦:), can we learn a desired 
function so that 𝑓(𝑥) ≈ 𝑦?
• Classification tree:  Learn a sequence of if-then statements that 

computes 𝑓(𝑥) ≈ 𝑦
• Mathematical definition of supervised learning: Given a training 

dataset, 𝒟 = 𝑥;, 𝑦; , … , 𝑥< , 𝑦< , find a function 𝑓 that minimizes 
the risk, ℛ = E ℓ 𝑌, 𝑓(𝑋) .

• Overtraining:  ℛ=>? =
;
<
∑:@;< ℓ 𝑦: , 𝑓(𝑥:)  reaches zero if you train 

long enough.
• Early Stopping: Stop when error rate on the dev set reaches a 

minimum



Linear Regression
• Definition of linear regression

𝑓 𝒙 = 𝒘!𝒙 + 𝑏
• Mean-squared error

ℒ =
1
𝑛*
"#$

%

ℒ" , 	 ℒ" =
1
2𝜖"

&, 	 𝜖" = 𝑓 𝒙" − 𝑦"

• Gradient descent

𝒘 ← 𝒘− 𝜂
𝜕ℒ
𝜕𝒘 ,

𝜕ℒ
𝜕𝒘 =

1
𝑛*
"#$

%

𝜖"𝒙"

• Stochastic gradient descent

𝒘 ← 𝒘− 𝜂
𝜕ℒ"
𝜕𝒘 ,

𝜕ℒ"
𝜕𝒘 = 𝜖"𝒙"



Perceptron
• Linear Classifiers: 𝑓(𝒙) = argmax𝑾𝒙 + 𝒃

• One-hot vectors:  𝒇 𝒙 =
𝑓! 𝒙
⋮

𝑓T 𝒙
=

𝕝UVWXUY𝑾𝒙\!
⋮

𝕝UVWXUY𝑾𝒙\T
, 𝒚 =

𝑦!
𝑦S
⋮

=
𝟙%\!
𝟙%\S
⋮

• Perceptron learning algorithm:

𝒘] ← d
𝒘] − 𝜂𝒙 𝑐 = argmax𝑾𝒙 + 𝒃
𝒘] + 𝜂𝒙 𝑐 = 𝑦
𝒘] otherwise



• Softmax:  𝑓] 𝒙 = ^Y_ 𝒘!"𝒙ab!
∑#$%
& ^Y_ 𝒘#

"𝒙ab#
≈ Pr 𝑌 = 𝑐 𝒙

• Sigmoid: 𝜎(𝒘(𝒙 + 𝑏) = !

!ac' 𝒘"𝒙*+
≈ Pr 𝑌 = 1 𝒙

• Cross-entropy:   ℒ = − ln 𝑓% 𝒙 , 	 dℒ
df! 𝒙

= d−
!

f! 𝒙
𝑐 = 𝑦	

0 otherwise

• Gradient descent: 𝒘] ← 𝒘] − 𝜂
dℒ
d𝒘!

• Derivative of the cross-entropy of a softmax: 

𝜕ℒ
𝜕𝒘]

= 𝜖]𝒙, 	 𝜖] = o
𝑓] 𝒙P − 1 𝑐 = 𝑦	(output	should	be	1)
𝑓] 𝒙P − 0 otherwise(output	should	be	0)



Multi-Layer
For example:

𝑓g = softmax
g

𝒛(S)

𝑧g
(S) = 𝑏g

(S) +4
Q\!

"

𝑤g,Q
(S)ℎQ

ℎQ = ReLU 𝑧Q
!

𝑧Q
(!) = 𝑏Q

(!) +4
P\!

h

𝑤Q,P
(!)𝑥P

𝑓!

𝑥! 𝑥" 𝑥$ 1…

𝑓" 𝑓%

1
ℎ! ℎ" ℎ&

𝑏&
(!)

…

…
𝑏%
(")

𝑤!,!
(!)

𝑤!,!
(")
𝑧;
(A) 𝑧A

(A) 𝑧B
(A)

…

𝑧;
(;) 𝑧A

(;) 𝑧<
(;)



Back-propagation
For example, if the loss is cross-entropy, then

𝜕ℒ

𝜕𝑧g
(S) = 𝑓g − 𝟙%\g

So the weight gradient is:

𝜕ℒ

𝜕𝑤Q,P
(!) 

= 4
g\!

T
𝜕ℒ

𝜕𝑧g
(S)

𝜕𝑧g
(S)

𝜕ℎQ
𝜕ℎQ
𝜕𝑤Q,P

(!)

= 4
g\!

T

𝑓g − 𝟙%\g 𝑤g,Q
(S)𝟙i,jk𝑥P 

𝑓!

𝑥! 𝑥" 𝑥$ 1…

𝑓" 𝑓%

1
ℎ! ℎ" ℎ&

𝑏&
(!)

…

…
𝑏%
(")

𝑤!,!
(!)

𝑤!,!
(")
𝑧;
(A) 𝑧A

(A) 𝑧B
(A)

…

𝑧;
(;) 𝑧A

(;) 𝑧<
(;)



Image formation & processing
• Pinhole camera equations:

𝑥′
𝑓
= −

𝑥
𝑧
,

𝑦l

𝑓
= −

𝑦
𝑧

• Vanishing point = parallel lines:
𝑥! = 𝑎𝑧 + 𝑐!, 	 𝑦! = 𝑏𝑧 + 𝑑!
𝑥S = 𝑎𝑧 + 𝑐S, 	 𝑦S = 𝑏𝑧 + 𝑑S

• Edge detection using difference-of-Gaussians:

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎S
𝑒
& m

n
-
a "
n

-

ℎ#′ 𝑥’, 𝑦’ =
ℎ(𝑥’ + 1, 𝑦’) − ℎ(𝑥’ − 1, 𝑦’)

2

ℎ%′ 𝑥’, 𝑦’ =
ℎ(𝑥’, 𝑦’ + 1) − ℎ(𝑥’, 𝑦’ − 1)

2



Convolution and Max Pooling

𝑦 𝑘, 𝑙 = ℎ[𝑘, 𝑙] ∗ 𝑥 𝑘, 𝑙 =+
"

+
'

𝑥 𝑘 − 𝑖, 𝑙 − 𝑗 ℎ 𝑖, 𝑗

𝑑ℒ
𝑑ℎ[𝑖, 𝑗]

=+
(

+
)

𝑑ℒ
𝑑𝑦[𝑘, 𝑙]

𝑑𝑦[𝑘, 𝑙]
𝑑ℎ[𝑖, 𝑗]

𝑧 𝑚, 𝑛 = max
*+$ ,-$.(.*,,
%+$ ,-$.).%,

𝑦 𝑘, 𝑙  

𝑑ℒ
𝑑𝑦[𝑘, 𝑙] =

𝑑ℒ
𝑑𝑧[𝑚, 𝑛]

if	𝑦 𝑘, 𝑙 = max
*+$ ,-$.".*,,
%+$ ,-$.'.%,

𝑦 𝑖, 𝑗  

0 otherwise
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Sample problems

• You can do the daily quizzes again, as often as you like
• Only your highest score counts toward your grade (presumably this is the one 

you received the first time you did the quiz, when 100% was possible)
• After you get a problem correct, you can click “Try a new variant” to try a new 

variant

• Sample exam is available
• Coverage is similar to the exam next week
• Style of questions is quite different



Sample problems

• Sample problems
• NOT the same format 

as the real exam

• Formula sheet
• SAME as the real 

exam


