Lecture 17: Exam 1 Review

Mark Hasegawa-Johnson, 2/2024
These slides are public domain: Copy at will

Outline

- How to take the exam
- What's on the exam
- Sample problems

How to take the exam

- Go to https://cbtf.Illinois.edu, choose CS440/ECE448 exam 1, and register the time and location where you will take the exam
- If you can't register at cbtf.Illinois.edu, contact us on campuswire BEFORE 1pm Monday

How to take the exam

- Show up on time at the appointed location! It's possible to reschedule if you miss an exam, but it will require you to go to a CBTF location to apply in person for permission to do so.
- Bring: Pencils and erasers
- CBTF will provide: Scratch paper
- The exam will have attached: a PDF formula sheet, which is also available now on the course web page, so you can see what will be on it

Exam format

- The exam will have 8 questions, each worth 13 points --- 104 points total. If you get 104 out of 104 , that is worth 100%.
- 100/104 = 96%.
- Each question will be multiple choice, very similar to the daily quiz questions in class
- You will get full credit (13 points) if you get it right on the first try
- If not, try again (and again and again and again, if necessary), for reduced credit
- E.g., if a question has 6 options, then you get 13,9,7,5,3,1 points for getting the correct answer on the $1^{\text {st }} / 2^{\text {nd }} / 3^{\text {rd }} / 4^{\text {th }} / 5^{\text {th }} / 6^{\text {th }}$ try.

Exam format

| 000 | \vdots |
| :--- | :--- | :--- |
| $\leftarrow \rightarrow$ | C |

```
D) speech - Search Results - Publ \(\times\)
O A https://us.prairielearn.com/pl/course_instance/147925/assessment_instar \(\mathfrak{z}\)
```


PrairieLearn ECE 448, sp2024 Assessments Gradebook E1

- Formula sheet
- Questions to answer

E1: Exam 1

Total points: 104/104
Assessment is open and you can answer questions. Available credit: 100\% (Staff override) ©

Decision Theory, Naive Bayes, Bayesian Networks and HMMs		$13 / 13$		
Question 1	complete	100%	-	$13 / 13$
Question 2	complete	100%	-	$13 / 13$
Question 3	complete	100%	-	$13 / 13$
Question 4	complete	100%	-	$13 / 13$
Question 5	complete	100%	-	$13 / 13$
Learning and Neural	Networks		-	$13 / 13$
Question 6	complete	100%	-	$13 / 13$
Question 7	complete	100%	-	
Question 8	complete	100%		

No saved answers to grade

- Submit your answer to each question with the Save \& Grade or Save only buttons on the question page.
- Look at Best submission to confirm that each question has been graded. Questions with Available points can be attempted aaain for more points. Attemptina auestions aqain will never reduce the points vou alreadv have.

Outline

- How to take the exam
- What's on the exam
- Sample problems

Topics

- Bayesian networks - 5 questions
- probability, decision theory, naïve Bayes, Bayes nets, HMMs, fairness
- Neural networks - 3 questions
- learning, regression, perceptron, softmax, multilayer, vision, CNN

Probability

- Probability Mass and Probability Density

$$
P(X=x)=\operatorname{Pr}(X=x) \quad \ldots \quad \text { or } \quad \ldots \quad P(X=x)=\frac{d}{d x} \operatorname{Pr}(X \leq x)
$$

- Jointly random variables

$$
P(X=\boldsymbol{x})=P\left(X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right)
$$

- Conditional Probability and Independence

$$
\begin{gathered}
P(X, Y)=P(X \mid Y) P(Y) \\
P(X \mid Y)=P(X) \Leftrightarrow P(X, Y)=P(X) P(Y)
\end{gathered}
$$

- Expectation

$$
\begin{gathered}
E[f(X, Y)]=\sum_{x, y} f(x, y) P(X=x, Y=y) \quad \ldots \quad \text { or } \quad \ldots \\
E[f(X, Y)]=\iint_{-\infty}^{\infty} f(x, y) P(X=x, Y=y) d x d y
\end{gathered}
$$

- Mean, Variance and Covariance

$$
\Sigma=E\left[(X-E[X])(X-E[X])^{T}\right]
$$

Decision theory

- Minimum Probability of Error = Maximum A Posteriori:

$$
f(x)=\underset{y}{\operatorname{argmax}} P(Y=y \mid X=x)
$$

- Bayes Error Rate:

$$
\text { Bayes Error Rate }=\sum_{x} P(X=x) \min _{y} P(Y \neq y \mid X=x)
$$

- Confusion Matrix, Precision \& Recall, Sensitivity \& Selectivity

$$
\begin{gathered}
\text { Precision }=P(Y=1 \mid f(X)=1)=\frac{T P}{T P+F P} \\
\text { Sensitivity }=\text { Recall }=P(f(X)=1 \mid Y=1)=\frac{T P}{T P+F N} \\
\text { Selectivity }=P(f(X)=0 \mid Y=0)=\frac{T N}{T N+F P}
\end{gathered}
$$

- Train, Dev, and Test Corpora

Naïve Bayes

- MPE = MAP with Bayes' rule:

$$
f(x)=\underset{y}{\operatorname{argmax}}(\log P(Y=y)+\log P(X=x \mid Y=y))
$$

- naïve Bayes:

$$
\log P(X=x \mid Y=y) \approx \sum_{i=1}^{n} \log P\left(W=w_{i} \mid Y=y\right)
$$

- maximum likelihood parameter estimation:

$$
P\left(W=w_{i} \mid Y=y\right)=\frac{\operatorname{Count}\left(w_{i}, y\right)}{\sum_{v \in V} \operatorname{Count}(v, y)}
$$

- Laplace Smoothing:

$$
P\left(W=w_{i} \mid Y=y\right)=\left\{\begin{array}{cc}
\frac{k+\operatorname{Count}\left(w_{i}, y\right)}{k+\sum_{v \in V}(k+\operatorname{Count}(v, y))} \\
\frac{k+\operatorname{Count}\left(w_{i}, y\right)}{\sum_{v \in V}(k+\operatorname{Count}(v, y))}
\end{array} \quad W=O O V\right. \text { is possible }
$$

Bayesian Networks

- Bayesian classifier: $f(x)=\underset{y}{\operatorname{argmax}} P(Y=y \mid X=x)$
- Bayesian network: A better way to represent knowledge
- Each variable is a node.
- An arrow between two nodes means that the child depends on the parent.
- Inference using a Bayesian network

$$
P(B=\mathrm{T}, J=\mathrm{T})=\sum_{e=\mathrm{\top}}^{\perp} \sum_{a=\mathrm{\top}}^{\perp} P(B=\mathrm{T}) P(E=e) P(A=a \mid B=\mathrm{T}, E=e) P(J=\mathrm{T} \mid A=a)
$$

- Key ideas: Independence and Conditional independence
- Independent = no common ancestors
- Conditionally independent =(1) no common descendants, and (2) none of the descendants of one are ancestors of the other

HMM: Viterbi Algorithm

Trellis is used to find the most likely path.

Three Definitions of Fairness

- Demographic Parity: $P(f(X) \mid A=1)=P(f(X) \mid A=0)$
- Equal Odds: $P(f(X) \mid Y, A=1)=P(f(X) \mid Y, A=0)$
- Predictive Parity: $P(Y \mid f(X), A=1)=P(Y \mid f(X), A=0)$

Those three things can only all be true, all at the same time, if:

- $P(Y \mid A=1)=P(Y \mid A=0)$

Learning

- Biological inspiration: Neurons that fire together wire together. Given enough training examples $\left(x_{i}, y_{i}\right)$, can we learn a desired function so that $f(x) \approx y$?
- Classification tree: Learn a sequence of if-then statements that computes $f(x) \approx y$
- Mathematical definition of supervised learning: Given a training dataset, $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, find a function f that minimizes the risk, $\mathcal{R}=\mathrm{E}[\ell(Y, f(X))]$.
- Overtraining: $\mathcal{R}_{\text {emp }}=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)$ reaches zero if you train long enough.
- Early Stopping: Stop when error rate on the dev set reaches a minimum

Linear Regression

- Definition of linear regression

$$
f(x)=\boldsymbol{w}^{T} \boldsymbol{x}+b
$$

- Mean-squared error

$$
\mathcal{L}=\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}, \quad \mathcal{L}_{i}=\frac{1}{2} \epsilon_{i}^{2}, \quad \epsilon_{i}=f\left(\boldsymbol{x}_{i}\right)-y_{i}
$$

- Gradient descent

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}}, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}}=\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \boldsymbol{x}_{i}
$$

- Stochastic gradient descent

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \frac{\partial \mathcal{L}_{i}}{\partial \boldsymbol{w}}, \quad \frac{\partial \mathcal{L}_{i}}{\partial \boldsymbol{w}}=\epsilon_{i} \boldsymbol{x}_{i}
$$

Perceptron

- Linear Classifiers: $f(\boldsymbol{x})=\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}$
- One-hot vectors: $\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}f_{1}(\boldsymbol{x}) \\ \vdots \\ f_{v}(\boldsymbol{x})\end{array}\right]=\left[\begin{array}{c}\mathbb{1}_{\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}=1} \\ \vdots \\ \mathbb{1}_{\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}=v}\end{array}\right], \boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots\end{array}\right]=\left[\begin{array}{c}\mathbb{1}_{y=1} \\ \mathbb{1}_{y=2} \\ \vdots\end{array}\right]$
- Perceptron learning algorithm:

$$
\boldsymbol{w}_{c} \leftarrow\left\{\begin{array}{cc}
\boldsymbol{w}_{c}-\eta \boldsymbol{x} & c=\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}+\boldsymbol{b} \\
\boldsymbol{w}_{c}+\eta \boldsymbol{x} & c=y \\
\boldsymbol{w}_{c} & \text { otherwise }
\end{array}\right.
$$

- Softmax: $f_{c}(\boldsymbol{x})=\frac{\exp \left(\boldsymbol{w}_{c}^{T} \boldsymbol{x}+b_{c}\right)}{\sum_{k=1}^{v} \exp \left(\boldsymbol{w}_{k}^{T} x+b_{k}\right)} \approx \operatorname{Pr}(Y=c \mid \boldsymbol{x})$
- Sigmoid: $\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)=\frac{1}{1+e^{-\left(\boldsymbol{w}^{T} x+b\right)}} \approx \operatorname{Pr}(Y=1 \mid \boldsymbol{x})$
- Cross-entropy: $\mathcal{L}=-\ln f_{y}(x), \quad \frac{\partial \mathcal{L}}{\partial f_{c}(x)}=\left\{\begin{array}{cc}-\frac{1}{f_{c}(x)} & c=y \\ 0 & \text { otherwise }\end{array}\right.$
- Gradient descent: $\boldsymbol{w}_{c} \leftarrow \boldsymbol{w}_{c}-\eta \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{c}}$
- Derivative of the cross-entropy of a softmax:

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{c}}=\epsilon_{c} \boldsymbol{x}, \quad \epsilon_{c}=\left\{\begin{array}{cc}
f_{c}\left(\boldsymbol{x}_{i}\right)-1 & c=y \text { (output should be 1) } \\
f_{c}\left(\boldsymbol{x}_{i}\right)-0 & \text { otherwise(output should be } 0)
\end{array}\right.
$$

Multi-Layer

For example:

$$
\begin{gathered}
f_{k}=\underset{k}{\operatorname{softmax}} \mathbf{z}^{(2)} \\
z_{k}^{(2)}=b_{k}^{(2)}+\sum_{j=1}^{n} w_{k, j}^{(2)} h_{j} \\
h_{j}=\operatorname{ReLU}\left(z_{j}^{(1)}\right) \\
z_{j}^{(1)}=b_{j}^{(1)}+\sum_{i=1}^{d} w_{j, i}^{(1)} x_{i}
\end{gathered}
$$

Back-propagation

For example, if the loss is cross-entropy, then

$$
\frac{\partial \mathcal{L}}{\partial z_{k}^{(2)}}=f_{k}-\mathbb{1}_{y=k}
$$

So the weight gradient is:

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial w_{j, i}^{(1)}}=\sum_{k=1}^{v}\left(\frac{\partial \mathcal{L}}{\partial z_{k}^{(2)}}\right)\left(\frac{\partial z_{k}^{(2)}}{\partial h_{j}}\right)\left(\frac{\partial h_{j}}{\partial w_{j, i}^{(1)}}\right) \\
=\sum_{k=1}^{v}\left(f_{k}-\mathbb{1}_{y=k}\right) w_{k, j}^{(2)} \mathbb{1}_{h_{j}>0} x_{i}
\end{gathered}
$$

Image formation \& processing

- Pinhole camera equations:

$$
\frac{x^{\prime}}{f}=-\frac{x}{z}, \quad \frac{y^{\prime}}{f}=-\frac{y}{z}
$$

- Vanishing point = parallel lines:

$$
\begin{array}{ll}
x_{1}=a z+c_{1}, & y_{1}=b z+d_{1} \\
x_{2}=a z+c_{2}, & y_{2}=b z+d_{2}
\end{array}
$$

- Edge detection using difference-of-Gaussians:

$$
\begin{gathered}
h(m, n)=\frac{1}{2 \pi \sigma^{2}} e^{-\left(\left(\frac{m}{\sigma}\right)^{2}+\left(\frac{n}{\sigma}\right)^{2}\right)} \\
h_{x}^{\prime}\left(x^{\prime}, y^{\prime}\right)=\frac{\left(h\left(x^{\prime}+1, y^{\prime}\right)-h\left(x^{\prime}-1, y^{\prime}\right)\right)}{2} \\
h_{y}^{\prime}\left(x^{\prime}, y^{\prime}\right)=\frac{\left(h\left(x^{\prime}, y^{\prime}+1\right)-h\left(x^{\prime}, y^{\prime}-1\right)\right)}{2}
\end{gathered}
$$

Convolution and Max Pooling

$$
\begin{gathered}
y[k, l]=h[k, l] * x[k, l]=\sum_{i} \sum_{j} x[k-i, l-j] h[i, j] \\
\frac{d \mathcal{L}}{d h[i, j]}=\sum_{k} \sum_{l} \frac{d \mathcal{L}}{d y[k, l]} \frac{d y[k, l]}{d h[i, j]} \\
z[m, n]=\max _{\substack{(m-1) p+1 \leq k \leq m p,(n-1) p+1 \leq l \leq n p}} y[k, l] \\
\frac{d \mathcal{L}}{d y[k, l]}=\left\{\begin{array}{cc}
\frac{d \mathcal{L}}{d z[m, n]} \quad \text { if } y[k, l]=\begin{array}{c}
(m-1) p+1 \leq i \leq m p, \\
(n-1) p+1 \leq j \leq n p
\end{array} \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Outline

- How to take the exam
- What's on the exam
- Sample problems

Sample problems

- You can do the daily quizzes again, as often as you like
- Only your highest score counts toward your grade (presumably this is the one you received the first time you did the quiz, when 100% was possible)
- After you get a problem correct, you can click "Try a new variant" to try a new variant
- Sample exam is available
- Coverage is similar to the exam next week
- Style of questions is quite different

Sample problems

- Sample problems
- NOT the same format as the real exam
- Formula sheet
- SAME as the real exam

