
Lecture 12: Multi-
Layer Neural Nets

Mark Hasegawa-Johnson
2/2024

These slides are in the public domain

𝑓!

𝑥! 𝑥" 𝑥# 1…

𝑓" 𝑓$

1
ℎ! ℎ" ℎ%

𝑏%
(!)𝑤!,!

(!)

…

…

𝑤!,!
(") 𝑏$

(")

Outline

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation

Linear classifier

Review: a linear classifier
computes

𝑓(𝒙) = argmax𝑾𝒙
The resulting classifier divides the
x-space into Voronoi regions:
convex regions with piece-wise
linear boundaries

Nonlinear classifier

• Not all classification problems
have convex decision regions
with PWL boundaries!
• Here’s an example problem in

which class 0 (blue) includes
values of x near [0.8,0]! , but it
also includes some values of x
near [0.4,0.9]!

• You can’t compute this function
using

𝑓(𝒙) = argmax𝑾𝒙

The solution: Piece-wise
linear functions
• Nonlinear classifiers, like this one,

can be learned using piece-wise
linear classification boundaries
• Nonlinear regression problems,

like this one, can be learned using
piece-wise linear regression
• In the limit, as the number of

pieces goes to infinity, the
approximation approaches the
desired solution

Public domain image, Krishnavedala, 2011

Multi-layer network
A piece-wise linear function 𝑓(𝒙) can be
represented by a two-layer neural network.
First, the hidden nodes compute:

ℎ! 𝒙 = max 0,𝒘!
" ,$𝒙 + 𝑏!

(")

Then for PWL regression, the output is a
weighted sum of the hidden nodes:

𝑓 𝒙 = 𝒘 ' ,$𝒙 + 𝑏 '

…while for PWL classification, the output is the
softmax or argmax of such a sum:

𝒇 𝒙 = softmax 0,𝑾 ' 𝒙 + 𝒃 '

𝑓!

𝑥! 𝑥" 𝑥# 1…

𝑓" 𝑓$

1
ℎ! ℎ" ℎ%

𝑏%
(!)𝑤!,!

(!)

…

…

𝑤!,!
(") 𝑏$

(")

For a PWL neural net, the hidden nodes are ReLU
If the goal is PWL classification boundaries,
we can achieve that by using hidden nodes
that are the simplest possible PWL
function: a Rectified Linear Unit, or ReLU:

ReLU(𝑧) = max(0, 𝑧)

This is differentiable everywhere except
z=0; its derivative is the unit step function:

𝜕ReLU(𝑧)
𝜕𝑧

= 𝑢 𝑧 = ;1 𝑧 > 0
0 𝑧 < 0

Example: Computing a non-
linear classification boundary
using ReLU hidden units

ℎ6 𝑥 = 𝑅𝑒𝐿𝑈 𝑥

𝑤7,7ℎ6 𝑥 = −2𝑅𝑒𝐿𝑈 𝑥 − 0.2

𝑤7,8ℎ7(𝑥) = 3𝑅𝑒𝐿𝑈 𝑥 − 0.45

𝑓(𝑥) = 𝑢 ℎ6 − 2ℎ7 + 3ℎ8 − 0.1

Outline

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation

Training a neural net: Gradient
descent

• Suppose we have some scalar loss
function, ℒ, that we want to minimize
• Define the gradient of ℒ w.r.t. the layer-l

weight matrix, 𝑾(#), as:

𝜕ℒ
𝜕𝑾(#) =

𝜕ℒ

𝜕𝑤%,%
(#)

𝜕ℒ

𝜕𝑤%,'
(#) ⋯

𝜕ℒ

𝜕𝑤',%
(#)

𝜕ℒ

𝜕𝑤','
(#) ⋯

⋮ ⋮ ⋱

𝑓!

𝑥! 𝑥" 𝑥# 1…

𝑓" 𝑓$

1
ℎ! ℎ" ℎ%

𝑏%
(!)𝑤!,!

(!)

…

…

𝑤!,!
(") 𝑏$

(")

Training a neural net: Gradient
descent

Gradient descent updates 𝑾()) as:

𝑾()) ← 𝑾()) − 𝜂
𝜕ℒ

𝜕𝑾())

𝑓!

𝑥! 𝑥" 𝑥# 1…

𝑓" 𝑓$

1
ℎ! ℎ" ℎ%

𝑏%
(!)𝑤!,!

(!)

…

…

𝑤!,!
(") 𝑏$

(")

Back-propagation = Chain rule
• Now here’s the big question: how do

we find (ℒ
(𝑾(")?

• Answer: use the chain rule. For
example,

𝜕ℒ

𝜕𝑤+,,
(%) = D

-.%

/
𝜕ℒ
𝜕𝑓-

𝜕𝑓-
𝜕ℎ,

𝜕ℎ,
𝜕𝑤+,,

(%)

𝑓!

𝑥! 𝑥" 𝑥# 1…

𝑓" 𝑓$

1
ℎ! ℎ" ℎ%

𝑏%
(!)

…

…

𝑏$
(")

𝑤!,!
(!)

𝑤!,!
(")

Excitations and Activations
The chain rule is often easier if separate each
node’s excitation and activation. For example,
we could have

𝑓(= softmax
(

𝒛(')

𝑧(
(') = 𝑏(

(') +;
!)"

*

𝑤(,!
(')ℎ!

ℎ! = ReLU 𝑧!
"

𝑧!
(") = 𝑏!

(") +;
+)"

,

𝑤!,+
(")𝑥+

𝑓!

𝑥! 𝑥" 𝑥# 1…

𝑓" 𝑓$

1
ℎ! ℎ" ℎ%

𝑏%
(!)

…

…
𝑏$
(")

𝑤!,!
(!)

𝑤!,!
(")
𝑧%
(') 𝑧'

(') 𝑧/
(')

…

𝑧%
(%) 𝑧'

(%) 𝑧0
(%)

Example
If the loss is cross-entropy, then

𝜕ℒ

𝜕𝑧(
(') = 𝑓(− 𝟙-)(

So the weight gradient is:

𝜕ℒ

𝜕𝑤+,!
(") = ;

()"

.
𝜕ℒ

𝜕𝑧(
(')

𝜕𝑧(
(')

𝜕ℎ!
𝜕ℎ!
𝜕𝑤+,!

(")

= ;
()"

.

𝑓(− 𝟙-)(𝑤(,!
(')𝟙/!01𝑥+

𝑓!

𝑥! 𝑥" 𝑥# 1…

𝑓" 𝑓$

1
ℎ! ℎ" ℎ%

𝑏%
(!)

…

…
𝑏$
(")

𝑤!,!
(!)

𝑤!,!
(")
𝑧%
(') 𝑧'

(') 𝑧/
(')

…

𝑧%
(%) 𝑧'

(%) 𝑧0
(%)

Try the quiz!

Try the quiz:
https://us.prairielearn.com/pl/course_instance/147925/assessment/23
97863

https://us.prairielearn.com/pl/course_instance/147925/assessment/2397863
https://us.prairielearn.com/pl/course_instance/147925/assessment/2397863

Approximating an arbitrary nonlinear
boundary using a two-layer network

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

How to train a neural network

• From a very large training dataset, randomly choose a training token
(𝒙+ , 𝑦+)
• Calculate the neural net prediction, 𝒇(𝒙+)
• Calculate the loss, e.g., ℒ = − log 𝑓1$ 𝒙+
• Back-propagate to find the gradients, (ℒ

(𝑾(%) and (ℒ
(𝑾(&)

• Do a gradient update step, 𝑾(#) ← 𝑾(#) − 𝜂 (ℒ
(𝑾(")

• Repeat until the loss is small enough.

