
CS440/ECE448 Lecture 11: 
Softmax

Mark Hasegawa-Johnson, 2/2024
These slides are in the public 

domain.  Re-use, remix, redistribute 
at will.

CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Exam_pass_logistic_curve.svg



Outline

• Linear Classifier: Review
• Probabilities: Softmax and logistic sigmoid
• Training criterion: Cross-entropy



Linear classifier

In a linear classifier,
𝑓(𝒙) = argmax𝑾𝒙 + 𝒃

The boundary between class 𝑘 and 
class 𝑙 is the line (or plane, or 
hyperplane) given by the equation

𝒘! − 𝒘"
#𝒙 + (𝑏! − 𝑏") = 0

… where 𝒘!
# is the kth row of 𝑾, 

and 𝑏! is the kth element of 𝒃.

𝑥!

𝑥"

𝒇(𝒙) = 20

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16
𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19



One-hot vectors
It’s often useful to convert the labels 𝑓(𝒙)
and 𝑦 into one-hot vectors 𝒇(𝒙) and 𝒚:

𝒚 =
𝑦$
⋮
𝑦%

=
𝕝&'$
⋮

𝕝&'%
∈ {0,1}% ,

𝒇 𝒙 =
𝑓$ 𝒙
⋮

𝑓% 𝒙
=

𝕝((𝒙)'$
⋮

𝕝((𝒙)'%
∈ {0,1}%

𝑥"

𝑥#

𝒇(𝒙) =

0
0
⋮
0
1

𝒇(𝒙) =

0
0
⋮
1
0

𝒇(𝒙) =

1
0
⋮
0
0

𝒇(𝒙) =

0
1
⋮
0
0



The perceptron learning algorithm

1. Compute the classifier output "𝑦 = argmax
𝒌

𝒘%
&𝒙 + 𝑏%

2. Update the weight vectors as:

𝒘% ← /
𝒘% − 𝜂𝒙 𝑘 = "𝑦
𝒘% + 𝜂𝒙 𝑘 = 𝑦
𝒘% otherwise

where 𝜂 ≈ 0.01 is the learning rate.



Outline

• Linear Classifier: Review
• Probabilities: Softmax and logistic sigmoid
• Training criterion: Cross-entropy



Key idea: 𝑓! 𝒙 =posterior probability of class 𝑐

• A perceptron has a one-hot output vector, in which 𝑓, 𝒙 = 1 if the 
neural net thinks c is the most likely value of y, and 0 otherwise

• A softmax computes 𝑓, 𝒙 ≈ Pr 𝑌 = 𝑐 𝒙 .  The conditions for this to 
be true are:

1. It needs to satisfy the axioms of probability: 

0 ≤ 𝑓3 𝒙 ≤ 1, '
345

6

𝑓3 𝒙 = 1

2. The weight matrix, 𝑾, is trained using a loss function that encourages 𝒇(𝒙)
to approximate posterior probability of the labels on some training dataset:

𝑓3 𝒙 ≈ Pr 𝑌 = 𝑐 𝒙



Softmax satisfies the axioms of probability

• Axiom #1, probabilities are non-negative (𝑓! 𝒙 ≥ 0).  There are 
many ways to do this, but one way that works is to choose:

𝑓, 𝒙 ∝ exp 𝒘,
#𝒙 + 𝑏,

• Axiom #2, probabilities should sum to one (∑!'$% 𝑓! 𝒙 = 1).  This can 
be done by normalizing:

𝑓, 𝒙 =
exp 𝒘,

#𝒙 + 𝑏,
∑!'-./$ exp 𝒘!

#𝒙 + 𝑏!



This is called the softmax function:
𝒇 𝒙 = 𝑓" 𝒙 , … , 𝑓'(𝒙) &

𝑓( 𝒙 =
exp 𝒘(

&𝒙 + 𝑏(
∑%)"' exp 𝒘%

&𝒙 + 𝑏%
…where 𝒘%

& is the kth row of the matrix 𝑾.

The softmax function



Quiz

Go to 
https://us.prairielearn.com/pl/course_instance/147925/assessment/23
97335, and try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/2397335
https://us.prairielearn.com/pl/course_instance/147925/assessment/2397335


For a two-class classifier, we don’t really need the vector label.  If we define 𝒘 = 𝒘5 −𝒘7 and 
𝑏 = 𝑏5 − 𝑏7, then the softmax simplifies to:

𝒇 𝑾𝒙 + 𝒃 =
Pr(𝑌 = 1|𝒙)
Pr(𝑌 = 2|𝒙) =

5
589!(𝒘𝑻𝒙&')

9!(𝒘
𝑻𝒙&')

589!(𝒘𝑻𝒙&')

=
𝜎(𝒘𝑻𝒙 + 𝑏)

1 − 𝜎(𝒘𝑻𝒙 + 𝑏)

… so instead of the softmax, we use a scalar function called the logistic sigmoid function:

𝜎(𝑧) = 5
589!)

This function is called sigmoid because it is S-shaped.

For 𝑧 → −∞, 𝜎(𝑧) → 0

For 𝑧 → +∞, 𝜎(𝑧) → 1

The logistic sigmoid function



Outline

• Linear Classifier: Review
• Probabilities: Softmax and logistic sigmoid
• Training criterion: Cross-entropy



Gradient descent

Suppose we have training tokens 
(𝑥0 , 𝑦0), and we have some initial 
class vectors 𝑤$ and 𝑤1.  We want 
to update them as

𝒘$ ← 𝒘$ − 𝜂
𝜕ℒ
𝜕𝒘$

𝒘1 ← 𝒘1 − 𝜂
𝜕ℒ
𝜕𝒘1

…where ℒ is some loss function.  
What loss function makes sense?

𝒘"

𝒘#

Training token 𝒙*  of 
class 𝑦* = 2

Training token 𝒙*  of class 𝑦* =
1



Zero-one loss function
The most obvious loss function for a 
classifier is its classification error 
rate,

ℒ =
1
𝑛%
!"#

$

ℓ 𝑓 𝒙! , 𝑦!

Where ℓ +𝑦, 𝑦 is the zero-one loss 
function,

ℓ 𝑓 𝒙 , 𝑦 = ,0 𝑓 𝒙 = 𝑦
1 𝑓 𝒙 ≠ 𝑦

The problem with zero-one loss is 
that it’s not differentiable.

𝒘"

𝒘#

Error

Error



A loss function that learns probabilities 
Suppose we have a softmax output, so we want 𝑓, 𝒙 ≈ Pr 𝑌 = 𝑐 𝒙 .  We can 
train this by learning 𝑾 and 𝒃 to maximize the probability of the training corpus.  
If we assume all training tokens are independent, we get:

𝑾,𝒃 = argmax
𝑾,𝒃

M
0'$

5

Pr 𝑌 = 𝑦0|𝒙0 = argmax
𝑾,𝒃

O
0'$

𝒏

ln Pr 𝑌 = 𝑦0|𝒙0

But remember that 𝑓, 𝒙 ≈ Pr 𝑌 = 𝑐 𝒙 ! Therefore, maximizing the log 
probability of training data is the same as minimizing the cross entropy between 
the neural net and the ground truth:

𝑾,𝒃 = argmin
𝑾,𝒃

1
𝑛
O
0'$

5

ℒ0 , ℒ0 = − log 𝑓&! 𝒙0



Cross-entropy

This loss function:
ℒ = − ln𝑓% 𝒙

is called cross-entropy.  It measures the 
difference in randomness between:

• Truth: 𝑌 = 𝑦 with probability 1.0, 
ln(1.0) = 0, minus the

• Neural net estimate: 𝑌 = 𝑦 with 
probability 𝑓% 𝒙 .

• Thus ℒ = 0 − ln𝑓% 𝒙

CC-SA 4.0, 
https://en.wikipedia.org/wiki/File:Ultra_slow-
motion_video_of_glass_tea_cup_smashed_on_concrete_floor.
webm



Stochastic gradient descent

Suppose we have a training example 
(𝒙, 𝑦).  We want to find

𝒘, ← 𝒘, − 𝜂
𝜕ℒ
𝜕𝒘,

Now we know that ℒ = − ln 𝑓& 𝒙 , 

and 𝑓& 𝒙 = 789 𝒘"#𝒙;<"
∑$%&
' 789 𝒘$

#𝒙;<$
.  What 

is >ℒ
>𝒘(

?

𝒘"

𝒘#

Training token 𝒙 of 
class 𝑦 = 2

Training token 𝒙 of class 𝑦 = 1



Gradient of the cross-entropy of a softmax

Suppose we define 𝑧, = 𝒘,
#𝒙 + 𝑏, .		Then we can write:

ℒ = − ln 𝑓& 𝒙 = − ln
𝑒@"

∑!'$% 𝑒@$
= ln O

!'$

%

𝑒@$ − 𝑧&

…and…

𝜕ℒ
𝜕𝑧,

=

𝑒@(
∑!'$% 𝑒@$

− 1 𝑐 = 𝑦

𝑒@(
∑!'$% 𝑒@$

𝑐 ≠ 𝑦



Gradient of the cross-entropy of the softmax

Since we have these definitions:

ℒ = − ln 𝑓& 𝒙 , 𝑓& 𝒙 =
exp 𝑧&

∑!'$% exp 𝑧!
, 𝑧, = 𝒘,

#𝒙 + 𝑏,

Then:

𝜕ℒ
𝜕𝒘,

=
𝜕ℒ
𝜕𝑧,

𝜕𝑧,
𝜕𝒘,

=
𝜕ℒ
𝜕𝑧,

𝒙

…where:

𝜕ℒ
𝜕𝑧,

= [
𝑓, 𝒙0 − 1 𝑐 = 𝑦
𝑓, 𝒙0 − 0 𝑐 ≠ 𝑦



Similarity to linear regression

For linear regression, we had:
𝜕ℒ
𝜕𝒘

= 𝜖𝒙, 𝜖 = 𝑓 𝒙 − 𝑦

For the softmax classifier with cross-entropy loss, we have

𝜕ℒ
𝜕𝒘,

= 𝜖,𝒙

𝜖, = [𝑓, 𝒙0 − 1 𝑐 = 𝑦 (output should be 1)
𝑓, 𝒙0 − 0 otherwise(output should be 0)



Similarity to perceptron
Suppose we have a training token 
(𝒙, 𝑦), and we have some initial 
class vectors 𝒘,.  Using softmax
and cross-entropy loss, we can 
update the weight vectors as

𝒘, ← 𝒘, − 𝜂𝜖,𝒙
…where 

𝜖, = [𝑓, 𝒙0 − 1 𝑐 = 𝑦0
𝑓, 𝒙0 − 0 otherwise

In other words, like a perceptron,

= [
𝜖, < 0 𝑐 = 𝑦0
𝜖, > 0 otherwise

𝒘" moves 
toward 𝒙

Training token 𝒙 of class 𝑦 = 1

𝒘# moves 
away from 𝒙



Outline

• Softmax:  𝑓3 𝒙 = ;<= 𝒘*+𝒙8?*
∑,-.
/ ;<= 𝒘,

+𝒙8?,
≈ Pr 𝑌 = 𝑐 𝒙

• Cross-entropy:   ℒ = − ln 𝑓A 𝒙

• Derivative of the cross-entropy of a softmax: 

𝜕ℒ
𝜕𝒘3

= 𝜖3𝒙, 𝜖3 = B
𝑓3 𝒙B − 1 𝑐 = 𝑦 (output should be 1)
𝑓3 𝒙B − 0 otherwise(output should be 0)

• Gradient descent:
𝒘3 ← 𝒘3 − 𝜂𝜖3𝒙


