CS440/ECE448 Lecture 10; Merkrosesmwaiohon 212024

These slides are in the public
domain. Re-use, remix, redistribute

Perceptron Sl

Aliza Aufrichtig @ @alizauf - Mar 4 v
Garlic halved horizontally = nature's Voronoi diagram?

- t,
S
k

en.wikipedia.org/wiki/Voronoi_d...

QO 12 a4 Qs O

Outline

* Linear Classifiers

* Gradient descent

* One-hot vectors and the perceptron loss function
* Perceptron learning algorithm

Linear classifier: Notation

* The observation xT = |x1, ..., xgq] is a real-valued vector (d is the
number of feature dimensions)

* The class label y € Y is drawn from some finite set of class labels.

* Usually the output vocabulary, Y, is some set of strings. For
convenience, though, we usually map the class labels to a sequence
of integers, Y = {1, ..., v}, where v is the vocabulary size

Linear classifier: Definition

A linear classifier is defined by
f(x) =argmaxWx + b

where:

X1 by wix + by

Wi1 Wl,d]
. . +

Wx+b=[:
Wp1 0 Wypd

Xd b, wlx + b,
Wy, b, are the weight vector and bias corresponding to class k, and the argmax

function finds the element of the vector wx with the largest value.

There are a total of v(d + 1) trainable parameters: the elements of the matrix w.

Example

Consider a two-class classification
problem, with

WI = [W1,1:W1,2] = [2,1]
Wg = [W2,1:W2,2] = [1,2]

Example

Notice that in the two-class case, the
equation
f(x) =argmaxWx + b

R
Simplifies to 1§"~
gL W
) = 1 wlix+b, >wix+b, N

2 wix+b, <wlx+b,

The class boundary is the line whose
equation is
(w, —wy)'x + (b, —by) =0

<

~H
-
=
\—’/
|
p—

7

Multi-class linear
classifier

In a general multi-class linear
classifier,
f(x) =argmaxWx + b

The boundary between class k and
class [is the line (or plane, or
hyperplane) given by the equation

(W, —w)'x+ (b —b) =0

f=1fx) =2 fx)=3

Tf(x) = 4
f(x) =20

f(x) =8

f(x) =11 f(x) =42

fay=15 TP =16 . _ 17

f(x) =19

Voronoi regions

The classification regions in a linear
classifier are called Voronoi regions.

A Voronoi region is a region that is

e Convex (if u and v are points in the
region, then every point on the line

segment UV connecting them is
also in the region)

* Bounded by piece-wise linear
boundaries

f@ =110 =20 fG)=3"

) = 4
F(x) = 20

f(x)=8 f(x) =5

f(X): -

fo) =11 e

) =1
7 f(x) =14

e /=1

f(x) =17

f(x) =19

Outline

* Gradient descent
* One-hot vectors and the perceptron loss function
* Perceptron learning algorithm

Gradient descent

Suppose we have training tokens
(x;,¥;), and we have some initial
class vectors w; and w,. We want
to update them as

0L

Wi, < Wy —Uﬁ
1

oL

Wy < Wj —Uﬁ
2

...where L is some loss function.
What loss function makes sense?

Training token x; of
classy; = 2

7/
/
/
7/
7/
/
/
/
/

/

Training token x; of class y; =

/ero-one loss function

The most obvious loss function for
a classifier is its classification error
rate,

n
1
L== e(f@D,y)
i=1
Where £(¥,y) is the zero-one loss

function,
£ (0),7) = {(1) Lo

Non-differentiable!

The problem with the zero-one
loss function is that it’s not
differentiable:

00(f(2),y)

yte [=y*

of(x) e

£(f(x),y),

Outline

* One-hot vectors and the perceptron loss function
* Perceptron learning algorithm

One-hot vectors

A one-hot vector is a binary vector in which all
elements are 0 except for a single element
that’s equal to 1.

Example: Binary classifier

Consider the classifier

fx) = [f 1 (x)] _ ﬁargmax Wx=1]

f2 (x) argmax Wx=2
..Where 1, is called the “indicator
function,” and it means:

1. — 1 Pistrue
P 0 Pisfalse

7%

flx) =

\

- o
/

ﬂ'/

<

7/

‘F
| il
‘ e
I “.l’ J

=]

Example: Multi-Class

Consider the classifier

f1 (X)] -Hargmax Wx=1-

f(x) = [P =
f(x)

Hargmax Wx=v

... with 20 classes. Then some of the
classifications might look like this.

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

Xq

One-hot ground truth

We can also use one-hot vectors
to describe the ground truth.
Let’s call the one-hot vector y,
and the integer label y, thus

Vg ﬂy=1]
y - [:Vz] B [ﬂy=2
Ground truth might differ from

classifier output. For example,
they might be as shown here:

E fx) = [2] Y = [(1) \

& ,L‘;v”" Yy = [
o =[q]. >
1 :
Y= lo
= VORI

Counting errors using one-hot vectors

* An error occurs if f(x) # y.
* So, to determine whether an error has occurred, we could just check:

f(x)—y=A

l] no error occurred

anythlng else an error occurred

The perceptron loss

Instead of a one-zero loss, the perceptron uses a weird loss function
that gives great results when differentiated. The perceptron loss
function is:

£(x,y) = (f(x) —y)" (Wx + b)

Wi Wl,d] b4

)

b,

X1
C 4+

:[fl(x)_ylr Y fv(x)_yv]<

Wp1 0 WypallXg

= Z(fk(x) — yi)(wix + by)
k=1

The perceptron loss

@ y) =) (@ =y (Whx + by)
k=1

Notice that:

(+1 fi(®) =1y, =0
fe(x) —yi) =41 fi(x) =0y, =1
. 0 otherwise

The perceptron loss

So what the loss really means is:
£(x,y) = (Wix + by) — (Wyx + by
Where:

* y is the correct class label for this training token

Yy = argmax(wg;x + bk) is the classifier output
k

f(x,y) >0ify#y
*t(x,y) =0ify =y

Outline

* Perceptron learning algorithm

Gradient of the perceptron loss

£(x,y) = (wyx + by) — (Wyx + b))
Its derivative is:

(oA
9€(x,y) X k=Y
=4 —X k=vy

_ 0 otherwise

awk

The perceptron learning algorithm

1. Compute the classifier output y = argmax(w?;x + bk)
k

2. Update the weight vectors as:

(oA
04 (x, y) We—nx k=Y

= {W; +1x k=y
. 0 otherwise

wheren = 0.01 is the learning rate.

Start with w, = [0,0]" for both classes.

Example Suppose that x = [0,2]7, with the label y = 1.
9 = argmax(w},x) is undefined, since wix = 0 for both
k
classes, so we only update
_[07] . _
X = [Zl,y 1
=9
1= ol

y undefined everywhere

Now w, = [0,0.02]7, but w,, = [0,0]7.

Example _
Suppose the next x = [—2,1]", with the label y = 2.
y = argmax(w?;x) = 1 which is wrong, so we update
W, « W, —nx = 0.02 | W, « W, + 11 = [—0.02]
_9 0.01 0.01
r = [1],y -
=1
0.02

Example

Suppose the next token is x = [3,0]7, with the label y = 1. Since J is
right, the weights don’t need to be updated:
w, < w,+0

X = [ﬂ y=1 W, unchanged

correction

necessary!

The perceptron learning algorithm

1. Compute the classifier output y = argmax(w?;x + bk)
k

2. Update the weight vectors as:

(Wk —nx k = 5;
W we+tnx k=y
. 0 otherwise

wheren = 0.01 is the learning rate.

Try the quiz!

Try the quiz:
https://us.prairielearn.com/pl/course instance/147925/assessment/23
95719

https://us.prairielearn.com/pl/course_instance/147925/assessment/2395719
https://us.prairielearn.com/pl/course_instance/147925/assessment/2395719

Special case: two classes

If there are only two classes, then we only need to learn one
weight vector, w = w; — w,. We can learn it as:

1. Compute the classifier output y = argmax(w?;x + bk)
k

2. Update the weight vectors as:

(w—nx 9#y,y=2
wesw+nx y#yy=1

.0 y=y

wheren = 0.01 is the learning rate. Sometimes we say y €
{1, —1}instead of y € {1,2}.

Outline

* Linear Classifiers: f(x) = argmaxWx + b

oL
N ow,

* Gradient descent: w,. « w,

£, (1)

* Perceptron learning algorithm:

y_

f1(x) Hargmax Wx=1 V1 Ty—q
* One-hot vectors: f(x) = l :] : y = [yzl — []1 _2]

Hargmax Wx=v

W, —nNx c=9
W, &< {W, +1nx c=Yy
0 otherwise

