
CS440/ECE448 Lecture 10:
Perceptron

Mark Hasegawa-Johnson, 2/2024
These slides are in the public

domain. Re-use, remix, redistribute
at will.

Outline

• Linear Classifiers
• Gradient descent
• One-hot vectors and the perceptron loss function
• Perceptron learning algorithm

Linear classifier: Notation

• The observation 𝒙! = [𝑥", … , 𝑥#] is a real-valued vector (𝑑 is the
number of feature dimensions)
• The class label 𝑦 ∈ 𝒴 is drawn from some finite set of class labels.
• Usually the output vocabulary, 𝒴, is some set of strings. For

convenience, though, we usually map the class labels to a sequence
of integers, 𝒴 = 1,… , 𝑣 , where 𝑣 is the vocabulary size

Linear classifier: Definition
A linear classifier is defined by

𝑓(𝒙) = argmax𝑾𝒙 + 𝒃

where:

𝑾𝒙+ 𝒃 =
𝑤!,! ⋯ 𝑤!,#
⋮ ⋱ ⋮

𝑤$,! ⋯ 𝑤$,#

𝑥!
⋮
𝑥#

+
𝑏!
⋮
𝑏$

=
𝑤!%𝑥 + 𝑏!

⋮
𝑤$%𝑥 + 𝑏$

𝒘& , 𝑏& are the weight vector and bias corresponding to class k, and the argmax
function finds the element of the vector 𝑤𝑥 with the largest value.

There are a total of 𝑣(𝑑 + 1) trainable parameters: the elements of the matrix 𝑤.

Example

Consider a two-class classification
problem, with

𝒘"
! = 𝑤",", 𝑤",% = 2,1

𝒘%
! = 𝑤%,", 𝑤%,% = [1,2]

𝑤!

𝑤"

Example

Notice that in the two-class case, the
equation

𝑓(𝒙) = argmax𝑾𝒙 + 𝒃

Simplifies to

𝑓(𝒙) = 9
1 𝒘!%𝒙 + 𝑏! > 𝒘'

%𝒙 + 𝑏'
2 𝒘!%𝒙 + 𝑏! < 𝒘'

%𝒙 + 𝑏'
The class boundary is the line whose
equation is

𝒘' −𝒘! %𝑥 + (𝑏' − 𝑏!) = 0

𝑓 𝒙 = 1

𝑓(𝒙) = 2

𝒘!

𝒘"

Multi-class linear
classifier
In a general multi-class linear
classifier,

𝑓(𝒙) = argmax𝑾𝒙 + 𝒃

The boundary between class 𝑘 and
class 𝑙 is the line (or plane, or
hyperplane) given by the equation

𝒘& − 𝒘'
!𝒙 + (𝑏& − 𝑏') = 0

𝑥#

𝑥!

𝒇(𝒙) = 20

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16
𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19

Voronoi regions

The classification regions in a linear
classifier are called Voronoi regions.
A Voronoi region is a region that is
• Convex (if 𝒖 and 𝒗 are points in the

region, then every point on the line
segment 𝒖𝒗 connecting them is
also in the region)
• Bounded by piece-wise linear

boundaries

𝑥#

𝑥!

𝒇(𝒙) = 20

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16
𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19

Outline

• Linear Classifiers
• Gradient descent
• One-hot vectors and the perceptron loss function
• Perceptron learning algorithm

Gradient descent

Suppose we have training tokens
(𝑥(, 𝑦(), and we have some initial
class vectors 𝑤" and 𝑤%. We want
to update them as

𝒘" ← 𝒘" − 𝜂
𝜕ℒ
𝜕𝒘"

𝒘% ← 𝒘% − 𝜂
𝜕ℒ
𝜕𝒘%

…where ℒ is some loss function.
What loss function makes sense?

𝒘!

𝒘"

Training token 𝒙$ of
class 𝑦$ = 2

Training token 𝒙$ of class 𝑦$ =
1

Zero-one loss function

The most obvious loss function for
a classifier is its classification error
rate,

ℒ =
1
𝑛
H
()"

*

ℓ 𝑓 𝒙(, 𝑦(

Where ℓ J𝑦, 𝑦 is the zero-one loss
function,

ℓ 𝑓 𝒙 , 𝑦 = K0 𝑓 𝒙 = 𝑦
1 𝑓 𝒙 ≠ 𝑦

𝒘!

𝒘"

Error

Error

Non-differentiable!

The problem with the zero-one
loss function is that it’s not
differentiable:

𝜕ℓ 𝑓 𝒙 , 𝑦
𝜕𝑓 𝒙

= M
0 𝑓 𝒙 ≠ 𝑦
+∞ 𝑓 𝒙 = 𝑦+

−∞ 𝑓 𝒙 = 𝑦,
𝑓 𝒙 − 𝑦

ℓ 𝑓(𝒙), 𝑦 = K
0 𝑓(𝒙) = 𝑦
1 𝑓(𝒙) ≠ 𝑦

Outline

• Linear Classifiers: multi-class and 2-class
• Gradient descent
• One-hot vectors and the perceptron loss function
• Perceptron learning algorithm

One-hot vectors

A one-hot vector is a binary vector in which all
elements are 0 except for a single element
that’s equal to 1.

Example: Binary classifier

Consider the classifier

𝒇 𝒙 = 𝑓! 𝒙
𝑓"(𝒙)

=
𝟙%&'(%) 𝑾𝒙,!
𝟙%&'(%) 𝑾𝒙,"

…where 𝟙- is called the “indicator
function,” and it means:

𝟙- = K1 𝑃 is true
0 𝑃 is false 𝒇 𝒙 = 1

0

𝒇 𝒙 = 0
1

𝒘!

𝒘"

Example: Multi-Class
Consider the classifier

𝒇 𝒙 =
𝑓" 𝒙
⋮

𝑓. 𝒙
=

𝕝/012/3 𝑾𝒙)"
⋮

𝕝/012/3 𝑾𝒙).

… with 20 classes. Then some of the
classifications might look like this.

𝑥#

𝑥!

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

𝑓(𝑥) =

0
0
⋮
0
1

𝑓(𝑥) =

0
0
⋮
1
0

𝑓(𝑥) =

1
0
⋮
0
0

𝑓(𝑥) =

0
1
⋮
0
0

One-hot ground truth
We can also use one-hot vectors
to describe the ground truth.
Let’s call the one-hot vector 𝒚,
and the integer label 𝑦, thus

𝒚 =
𝑦!
𝑦" =

𝟙.,!
𝟙.,"

Ground truth might differ from
classifier output. For example,
they might be as shown here:

𝒇 𝒙 = 1
0 , 𝒚 = 1

0

𝒘"

𝒘!

𝒇 𝒙 = 0
1 , 𝒚 = 0

1

𝒇 𝒙 = 1
0 ,

𝒚 = 0
1

𝒇 𝒙 = 0
1 ,

𝒚 = 1
0

Counting errors using one-hot vectors

• An error occurs if 𝒇 𝒙 ≠ 𝒚.
• So, to determine whether an error has occurred, we could just check:

𝒇 𝒙 − 𝒚 =

0
⋮
0

no error occurred

anything else an error occurred

The perceptron loss

Instead of a one-zero loss, the perceptron uses a weird loss function
that gives great results when differentiated. The perceptron loss
function is:

ℓ(𝒙, 𝒚) = 𝒇 𝒙 − 𝒚 !(𝑾𝒙 + 𝒃)

= 𝑓" 𝒙 − 𝑦", ⋯ , 𝑓. 𝒙 − 𝑦.
𝑤"," ⋯ 𝑤",#
⋮ ⋱ ⋮

𝑤.," ⋯ 𝑤.,#

𝑥"
⋮
𝑥#

+
𝑏"
⋮
𝑏.

= H
&)"

.

𝑓& 𝒙 − 𝑦& 𝒘&
!𝒙 + 𝑏&

The perceptron loss

ℓ(𝒙, 𝒚) = 3
/,!

0

𝑓/ 𝒙 − 𝑦/ 𝒘/
1𝒙 + 𝑏/

Notice that:

𝑓/ 𝒙 − 𝑦/ = 6
+1 𝑓/ 𝒙 = 1, 𝑦/ = 0
−1 𝑓/ 𝒙 = 0, 𝑦/ = 1
0 otherwise

The perceptron loss

So what the loss really means is:
ℓ 𝒙, 𝒚 = 𝒘 2.

1𝒙 + 𝑏 2. − 𝒘.
1𝒙 + 𝑏.

Where:

• 𝑦 is the correct class label for this training token

• ?𝑦 = argmax
𝒌

𝒘/
1𝒙 + 𝑏/ is the classifier output

• ℓ 𝒙, 𝒚 > 0 if ?𝑦 ≠ 𝑦
• ℓ 𝒙, 𝒚 = 0 if ?𝑦 = 𝑦

Outline

• Linear Classifiers: multi-class and 2-class
• Gradient descent
• One-hot vectors and the perceptron loss function
• Perceptron learning algorithm

Gradient of the perceptron loss

ℓ 𝒙, 𝒚 = 𝒘 2.
1𝒙 + 𝑏 2. − 𝒘.

1𝒙 + 𝑏.
Its derivative is:

𝜕ℓ 𝒙, 𝒚
𝜕𝒘/

= 6
𝑥 𝑘 = ?𝑦
−𝑥 𝑘 = 𝑦
0 otherwise

The perceptron learning algorithm

1. Compute the classifier output ?𝑦 = argmax
𝒌

𝒘/
1𝒙 + 𝑏/

2. Update the weight vectors as:

𝒘/ ← 𝒘/ − 𝜂
𝜕ℓ 𝒙, 𝒚
𝜕𝒘/

= 6
𝒘/ − 𝜂𝒙 𝑘 = ?𝑦
𝒘/ + 𝜂𝒙 𝑘 = 𝑦

0 otherwise
where 𝜂 ≈ 0.01 is the learning rate.

Example
Start with 𝒘/ = 0,0 1 for both classes.
Suppose that 𝑥 = 0,2 1 , with the label 𝑦 = 1.

?𝑦 = argmax
𝒌

𝒘/
1𝒙 is undefined, since 𝒘/

1𝒙 = 𝟎 for both

classes, so we only update

𝒘! ← 𝒘! + 𝜂𝒙 =
0

0.02

𝒘𝟏 =
0
0

?𝑦 = 2

?𝑦 = 1

𝒘𝟏 =
0

0.02
𝒙 = 0

2 , 𝑦 = 1

?𝑦 undefined everywhere

LEARN!

+1 +1

Example

?𝑦 = 2

?𝑦 = 1

LEARN!
2

𝒙 = −2
1 , 𝑦 = 2

1

2

1

?𝑦 = 2

?𝑦 = 1

𝒘𝟏 =
0

0.02

Now 𝒘! = 0,0.02 1 , but 𝒘" = 0,0 1 .

Suppose the next 𝒙 = −2,1 1 , with the label 𝑦 = 2.

?𝑦 = argmax
𝒌

𝒘/
1𝒙 = 1 which is wrong, so we update

𝒘! ← 𝒘! − 𝜂𝒙 =
0.02
0.01 , 𝒘" ← 𝒘" + 𝜂𝒙 =

−0.02
0.01

𝒘𝟏 =
0.02
0.01

Example
Suppose the next token is 𝒙 = 3,0 !, with the label 𝑦 = 1. Since J𝑦 is
right, the weights don’t need to be updated:

𝒘& ← 𝒘& + 0

?𝑦 = 2

?𝑦 = 1

𝒘& unchanged

No
correction
necessary!

𝒙 = 3
1 , 𝑦 = 1

2

1

?𝑦 = 2

?𝑦 = 1

2

1

1 1

The perceptron learning algorithm

1. Compute the classifier output ?𝑦 = argmax
𝒌

𝒘/
1𝒙 + 𝑏/

2. Update the weight vectors as:

𝒘/ ← 6
𝒘/ − 𝜂𝒙 𝑘 = ?𝑦
𝒘/ + 𝜂𝒙 𝑘 = 𝑦

0 otherwise
where 𝜂 ≈ 0.01 is the learning rate.

Try the quiz!

Try the quiz:
https://us.prairielearn.com/pl/course_instance/147925/assessment/23
95719

https://us.prairielearn.com/pl/course_instance/147925/assessment/2395719
https://us.prairielearn.com/pl/course_instance/147925/assessment/2395719

Special case: two classes

If there are only two classes, then we only need to learn one
weight vector, 𝒘 = 𝒘! −𝒘". We can learn it as:
1. Compute the classifier output $𝑦 = argmax

𝒌
𝒘/
1𝒙 + 𝑏/

2. Update the weight vectors as:

𝒘 ← /
𝒘− 𝜂𝒙 $𝑦 ≠ 𝑦, 𝑦 = 2
𝒘 + 𝜂𝒙 $𝑦 ≠ 𝑦, 𝑦 = 1
0 $𝑦 = 𝑦

where 𝜂 ≈ 0.01 is the learning rate. Sometimes we say 𝑦 ∈
{1,−1} instead of 𝑦 ∈ {1,2}.

Outline
• Linear Classifiers: 𝑓(𝒙) = argmax𝑾𝒙 + 𝒃

• Gradient descent: 𝒘: ← 𝒘: − 𝜂
;ℒ
;𝒘!

• One-hot vectors: 𝒇 𝒙 =
𝑓! 𝒙
⋮

𝑓$ 𝒙
=

𝕝>?@A>B𝑾𝒙D!
⋮

𝕝>?@A>B𝑾𝒙D$
, 𝒚 =

𝑦!
𝑦'
⋮

=
𝟙ED!
𝟙ED'
⋮

• Perceptron learning algorithm:

𝒘: ← F
𝒘: − 𝜂𝒙 𝑐 = H𝑦
𝒘: + 𝜂𝒙 𝑐 = 𝑦

0 otherwise

