CS440/ECE448 Lecture 10: Perceptron

These slides are in the public domain. Re-use, remix, redistribute at will.

Aliza Aufrichtig @alizauf • Mar 4
Garlic halved horizontally = nature's Voronoi diagram?

en.wikipedia.org/wiki/Voronoi_d..

Outline

- Linear Classifiers
- Gradient descent
- One-hot vectors and the perceptron loss function
- Perceptron learning algorithm

Linear classifier: Notation

- The observation $\boldsymbol{x}^{T}=\left[x_{1}, \ldots, x_{d}\right]$ is a real-valued vector (d is the number of feature dimensions)
- The class label $y \in \mathcal{Y}$ is drawn from some finite set of class labels.
- Usually the output vocabulary, \mathcal{Y}, is some set of strings. For convenience, though, we usually map the class labels to a sequence of integers, $\mathcal{Y}=\{1, \ldots, v\}$, where v is the vocabulary size

Linear classifier: Definition

A linear classifier is defined by

$$
f(\boldsymbol{x})=\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}
$$

where:

$$
\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}=\left[\begin{array}{ccc}
w_{1,1} & \cdots & w_{1, d} \\
\vdots & \ddots & \vdots \\
w_{v, 1} & \cdots & w_{v, d}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{v}
\end{array}\right]=\left[\begin{array}{c}
w_{1}^{T} x+b_{1} \\
\vdots \\
w_{v}^{T} x+b_{v}
\end{array}\right]
$$

$\boldsymbol{w}_{k}, b_{k}$ are the weight vector and bias corresponding to class \mathbf{k}, and the argmax function finds the element of the vector $w x$ with the largest value.
There are a total of $v(d+1)$ trainable parameters: the elements of the matrix w.

Example

Consider a two-class classification problem, with

$$
\begin{aligned}
& \boldsymbol{w}_{1}^{T}=\left[w_{1,1}, w_{1,2}\right]=[2,1] \\
& \boldsymbol{w}_{2}^{T}=\left[w_{2,1}, w_{2,2}\right]=[1,2]
\end{aligned}
$$

Example

Notice that in the two-class case, the equation

$$
f(\boldsymbol{x})=\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}
$$

Simplifies to

$$
f(\boldsymbol{x})= \begin{cases}1 & \boldsymbol{w}_{1}^{T} \boldsymbol{x}+b_{1}>\boldsymbol{w}_{2}^{T} \boldsymbol{x}+b_{2} \\ 2 & \boldsymbol{w}_{1}^{T} \boldsymbol{x}+b_{1}<\boldsymbol{w}_{2}^{T} \boldsymbol{x}+b_{2}\end{cases}
$$

The class boundary is the line whose equation is

$$
\left(\boldsymbol{w}_{2}-\boldsymbol{w}_{1}\right)^{T} x+\left(b_{2}-b_{1}\right)=0
$$

Multi-class linear classifier

In a general multi-class linear classifier,

$$
f(\boldsymbol{x})=\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}
$$

The boundary between class k and class l is the line (or plane, or hyperplane) given by the equation

$$
\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{l}\right)^{T} \boldsymbol{x}+\left(b_{k}-b_{l}\right)=0
$$

Voronoi regions

The classification regions in a linear classifier are called Voronoi regions.
A Voronoi region is a region that is

- Convex (if \boldsymbol{u} and \boldsymbol{v} are points in the region, then every point on the line segment $\overline{\boldsymbol{u v}}$ connecting them is also in the region)
- Bounded by piece-wise linear boundaries

Outline

- Linear Classifiers
- Gradient descent
- One-hot vectors and the perceptron loss function
- Perceptron learning algorithm

Gradient descent

Suppose we have training tokens (x_{i}, y_{i}), and we have some initial class vectors w_{1} and w_{2}. We want to update them as

$$
\begin{aligned}
& \boldsymbol{w}_{1} \leftarrow \boldsymbol{w}_{1}-\eta \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{1}} \\
& \boldsymbol{w}_{2} \leftarrow \boldsymbol{w}_{2}-\eta \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{2}}
\end{aligned}
$$

...where \mathcal{L} is some loss function. What loss function makes sense?

Training token \boldsymbol{x}_{i} of class $y_{i}=$

Zero-one loss function

The most obvious loss function for a classifier is its classification error rate,

$$
\mathcal{L}=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(\boldsymbol{x}_{i}\right), y_{i}\right)
$$

Where $\ell(\hat{y}, y)$ is the zero-one loss function,

$$
\ell(f(\boldsymbol{x}), y)= \begin{cases}0 & f(\boldsymbol{x})=y \\ 1 & f(\boldsymbol{x}) \neq y\end{cases}
$$

Non-differentiable!

The problem with the zero-one loss function is that it's not differentiable:

$$
\frac{\partial \ell(f(\boldsymbol{x}), y)}{\partial f(\boldsymbol{x})}=\left\{\begin{array}{cc}
0 & f(\boldsymbol{x}) \neq y \\
+\infty & f(\boldsymbol{x})=y^{+} \\
-\infty & f(\boldsymbol{x})=y^{-}
\end{array}\right.
$$

$$
\ell(f(\boldsymbol{x}), y)^{\prime}= \begin{cases}0 & f(\boldsymbol{x})=y \\ 1 & f(\boldsymbol{x}) \neq y\end{cases}
$$

Outline

- Linear Classifiers: multi-class and 2-class
- Gradient descent
- One-hot vectors and the perceptron loss function
- Perceptron learning algorithm

One-hot vectors

A one-hot vector is a binary vector in which all elements are 0 except for a single element that's equal to 1.

Example: Binary classifier

Consider the classifier

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{l}
f_{1}(\boldsymbol{x}) \\
f_{2}(\boldsymbol{x})
\end{array}\right]=\left[\begin{array}{l}
\mathbb{1}_{\operatorname{argmax}} \boldsymbol{W} \boldsymbol{x}=1 \\
\mathbb{1}_{\operatorname{argmax}} \boldsymbol{W} \boldsymbol{x}=2
\end{array}\right]
$$

...where $\mathbb{1}_{P}$ is called the "indicator function," and it means:

$$
\mathbb{1}_{P}= \begin{cases}1 & P \text { is true } \\ 0 & P \text { is false }\end{cases}
$$

Example: Multi-Class

Consider the classifier

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
\vdots \\
f_{v}(\boldsymbol{x})
\end{array}\right]=\left[\begin{array}{c}
\mathbb{1}_{\operatorname{argmax}} \boldsymbol{W} \boldsymbol{x}=1 \\
\vdots \\
\mathbb{1}_{\operatorname{argmax}} \boldsymbol{W} \boldsymbol{x}=v
\end{array}\right]
$$

... with 20 classes. Then some of the classifications might look like this.
https://commons.wikimedia.org/w/index.php?curid=38534275
x_{0}

One-hot ground truth

We can also use one-hot vectors to describe the ground truth. Let's call the one-hot vector \boldsymbol{y}, and the integer label y, thus

$$
\boldsymbol{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{1}_{y=1} \\
\mathbb{1}_{y=2}
\end{array}\right]
$$

Ground truth might differ from classifier output. For example, they might be as shown here:

Counting errors using one-hot vectors

- An error occurs if $\boldsymbol{f}(\boldsymbol{x}) \neq \boldsymbol{y}$.
- So, to determine whether an error has occurred, we could just check:

$$
\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{y}=\left\{\begin{array}{cc}
{\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]} & \text { no error occurred } \\
\text { anything else } & \text { an error occurred }
\end{array}\right.
$$

The perceptron loss

Instead of a one-zero loss, the perceptron uses a weird loss function that gives great results when differentiated. The perceptron loss function is:

$$
\begin{gathered}
\ell(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{y})^{T}(\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}) \\
=\left[f_{1}(\boldsymbol{x})-y_{1}, \quad \cdots, \quad f_{v}(\boldsymbol{x})-y_{v}\right]\left(\left[\begin{array}{ccc}
w_{1,1} & \cdots & w_{1, d} \\
\vdots & \ddots & \vdots \\
w_{v, 1} & \cdots & w_{v, d}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{v}
\end{array}\right]\right) \\
=\sum_{k=1}^{v}\left(f_{k}(\boldsymbol{x})-y_{k}\right)\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}+b_{k}\right)
\end{gathered}
$$

The perceptron loss

$$
\ell(\boldsymbol{x}, \boldsymbol{y})=\sum_{k=1}^{v}\left(f_{k}(\boldsymbol{x})-y_{k}\right)\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}+b_{k}\right)
$$

Notice that:

$$
\left(f_{k}(\boldsymbol{x})-y_{k}\right)=\left\{\begin{array}{cc}
+1 & f_{k}(\boldsymbol{x})=1, y_{k}=0 \\
-1 & f_{k}(\boldsymbol{x})=0, y_{k}=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

The perceptron loss

So what the loss really means is:

$$
\ell(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{w}_{\hat{\boldsymbol{y}}}^{T} \boldsymbol{x}+b_{\hat{y}}\right)-\left(\boldsymbol{w}_{y}^{T} \boldsymbol{x}+b_{y}\right)
$$

Where:

- y is the correct class label for this training token
- $\hat{y}=\underset{\boldsymbol{k}}{\operatorname{argmax}}\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}+b_{k}\right)$ is the classifier output
- $\ell(\boldsymbol{x}, \boldsymbol{y})>0$ if $\hat{y} \neq y$
- $\ell(\boldsymbol{x}, \boldsymbol{y})=0$ if $\hat{y}=y$

Outline

- Linear Classifiers: multi-class and 2-class
- Gradient descent
- One-hot vectors and the perceptron loss function
- Perceptron learning algorithm

Gradient of the perceptron loss

$$
\ell(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{w}_{\hat{y}}^{T} \boldsymbol{x}+b_{\hat{y}}\right)-\left(\boldsymbol{w}_{y}^{T} \boldsymbol{x}+b_{y}\right)
$$

Its derivative is:

$$
\frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{w}_{k}}=\left\{\begin{array}{cc}
x & k=\hat{y} \\
-x & k=y \\
0 & \text { otherwise }
\end{array}\right.
$$

The perceptron learning algorithm

1. Compute the classifier output $\hat{y}=\underset{\boldsymbol{k}}{\operatorname{argmax}}\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}+b_{k}\right)$
2. Update the weight vectors as:

$$
\boldsymbol{w}_{k} \leftarrow \boldsymbol{w}_{k}-\eta \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{w}_{k}}=\left\{\begin{array}{cc}
\boldsymbol{w}_{k}-\eta \boldsymbol{x} & k=\hat{y} \\
\boldsymbol{w}_{k}+\eta \boldsymbol{x} & k=y \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\eta \approx 0.01$ is the learning rate.

Example

Start with $\boldsymbol{w}_{k}=[0,0]^{T}$ for both classes.
Suppose that $x=[0,2]^{T}$, with the label $y=1$.
$\hat{y}=\underset{\boldsymbol{k}}{\operatorname{argmax}}\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}\right)$ is undefined, since $\boldsymbol{w}_{k}^{T} \boldsymbol{x}=\mathbf{0}$ for both classes, so we only update

Example
Now $\boldsymbol{w}_{1}=[0,0.02]^{T}$, but $\boldsymbol{w}_{2}=[0,0]^{T}$.
Suppose the next $\boldsymbol{x}=[-2,1]^{T}$, with the label $y=2$.
$\hat{y}=\underset{\boldsymbol{k}}{\operatorname{argmax}}\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}\right)=1$ which is wrong, so we update
$\boldsymbol{w}_{1} \leftarrow \boldsymbol{w}_{1}-\eta \boldsymbol{x}=\left[\begin{array}{l}0.02 \\ 0.01\end{array}\right], \quad \boldsymbol{w}_{2} \leftarrow \boldsymbol{w}_{2}+\eta \boldsymbol{x}=\left[\begin{array}{c}-0.02 \\ 0.01\end{array}\right]$
$x=\left[\begin{array}{c}-2 \\ 1\end{array}\right], y=2$

$$
\hat{y}=1
$$

$w_{1}=\left[\begin{array}{c}0 \\ 0.02\end{array}\right] \hat{y}=2$

LEARN!

Example

Suppose the next token is $\boldsymbol{x}=[3,0]^{T}$, with the label $y=1$. Since \hat{y} is right, the weights don't need to be updated:

$$
\boldsymbol{w}_{k} \leftarrow \boldsymbol{w}_{k}+0
$$

$x=\left[\begin{array}{l}3 \\ 1\end{array}\right], y=1$

The perceptron learning algorithm

1. Compute the classifier output $\hat{y}=\underset{\boldsymbol{k}}{\operatorname{argmax}}\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}+b_{k}\right)$
2. Update the weight vectors as:

$$
\boldsymbol{w}_{k} \leftarrow\left\{\begin{array}{cc}
\boldsymbol{w}_{k}-\eta \boldsymbol{x} & k=\hat{y} \\
\boldsymbol{w}_{k}+\eta \boldsymbol{x} & k=y \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\eta \approx 0.01$ is the learning rate.

Try the quiz!

Try the quiz:
https://us.prairielearn.com/pl/course_instance/147925/assessment/23 95719

Special case: two classes

If there are only two classes, then we only need to learn one weight vector, $\boldsymbol{w}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2}$. We can learn it as:

1. Compute the classifier output $\hat{y}=\underset{\boldsymbol{k}}{\operatorname{argmax}}\left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}+b_{k}\right)$
2. Update the weight vectors as:

$$
\boldsymbol{w} \leftarrow\left\{\begin{array}{cc}
\boldsymbol{w}-\eta \boldsymbol{x} & \hat{y} \neq y, y=2 \\
\boldsymbol{w}+\eta \boldsymbol{x} & \hat{y} \neq y, y=1 \\
0 & \hat{y}=y
\end{array}\right.
$$

where $\eta \approx 0.01$ is the learning rate. Sometimes we say $y \in$ $\{1,-1\}$ instead of $y \in\{1,2\}$.

Outline

- Linear Classifiers: $f(\boldsymbol{x})=\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}$
- Gradient descent: $\boldsymbol{w}_{c} \leftarrow \boldsymbol{w}_{c}-\eta \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{c}}$
- One-hot vectors: $\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}f_{1}(\boldsymbol{x}) \\ \vdots \\ f_{v}(\boldsymbol{x})\end{array}\right]=\left[\begin{array}{c}\mathbb{1}_{\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}=1} \\ \vdots \\ \mathbb{1}_{\operatorname{argmax} \boldsymbol{W} \boldsymbol{x}=v}\end{array}\right], \boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots\end{array}\right]=\left[\begin{array}{c}\mathbb{1}_{y=1} \\ \mathbb{1}_{y=2} \\ \vdots\end{array}\right]$
- Perceptron learning algorithm:

$$
\boldsymbol{w}_{c} \leftarrow\left\{\begin{array}{cc}
\boldsymbol{w}_{c}-\eta \boldsymbol{x} & c=\hat{y} \\
\boldsymbol{w}_{c}+\eta \boldsymbol{x} & c=y \\
0 & \text { otherwise }
\end{array}\right.
$$

