CS 440/ECE 448 Lecture 2: Random Variables

Mark Hasegawa-Johnson, 1/2023

Lecture slides: CC0 PUBLIC DOMAIN

Images may have other license terms

CC-BY-3.0 Image by Diacritica, 2010

https://commons.wikimedia.org/wiki/File:6sided_dice.jpg

Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Notation: Probability

If an experiment is run an infinite number of times, the probability of event A is the fraction of those times on which event A occurs.

Axiom 1: every event A has a non-negative probability.

$$\Pr(A) \ge 0$$

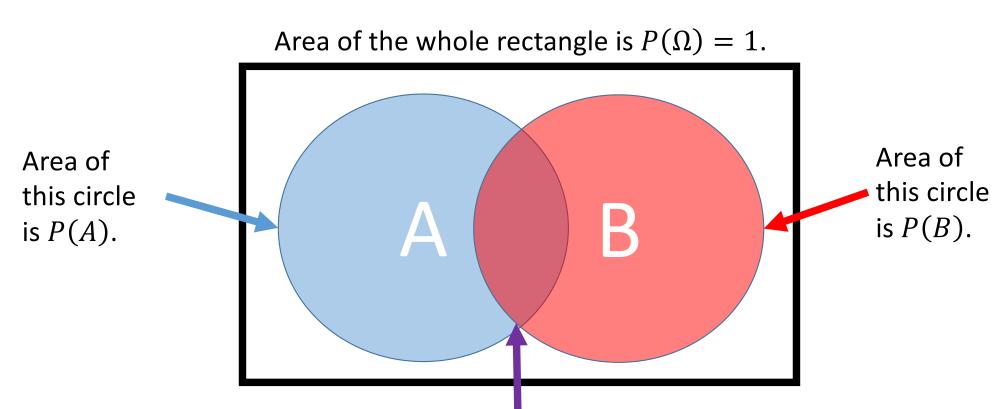
Axiom 2: If an event Ω always occurs, we say it has probability 1.

$$Pr(\Omega) = 1$$

Axiom 3: probability measures behave like set measures.

$$Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$$

Axiom 3: probability measures behave like set measures.



Area of their intersection is $P(A \land B)$. Area of their union is $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Notation: Random Variables

A <u>random variable</u> is a function that summarizes the output of an experiment. We use <u>capital letters</u> to denote random variables.

• Example: every Friday, Maria brings a cake to her daughter's preschool. X is the number of children who eat the cake.

We use a **small letter** to denote a particular **outcome** of the experiment.

• Example: for the last three weeks, each week, 5 children had cake, but this week, only 4 children had cake. Estimate P(X=x) for all possible values of x.

Notation: P(X = x) is a number, but P(X) is a distribution

• P(X = 4) or P(4) is the probability mass or probability density of the outcome "X = 4." For example:

$$P(X=4) = \frac{1}{4}$$

• P(X) is the complete <u>distribution</u>, specifying P(X = x) for all possible values of x. For example:

	$\boldsymbol{\chi}$	4	5
P(X) =	P(x)	1	3
	, ,	$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$

Discrete versus Continuous RVs

- *X* is a <u>discrete random variable</u> if it can only take countably many different values.
 - Example: X is the number of people living in a randomly selected city $X \in \{1,2,3,4,...\}$
 - Example: X is the first word on a randomly selected page $X \in \{\text{the, and, of, bobcat, ...}\}$
 - Example: X is the next emoji you will receive on your cellphone

$$X \in \{ \stackrel{\smile}{\bullet}, \stackrel{\smile}{\bullet}, \stackrel{\smile}{\circ}, \stackrel{\smile}{\circ}, \stackrel{\smile}{\circ}, \stackrel{\smile}{\circ}, \dots \}$$

- X is a **continuous random variable** if it can take uncountably many different values
 - Example: X is the energy of the next object to collide with Earth $X \in \mathbb{R}^+$ (the set of all positive real numbers)

Probability Mass Function (pmf) is a type of probability

- If X is a <u>discrete random variable</u>, then P(X) is its <u>probability mass</u> <u>function (pmf)</u>.
- A probability mass is just a probability. P(X = x) = Pr(X = x) is the just the probability of the outcome "X = x." Thus:

$$0 \le P(X = x)$$
$$1 = \sum P(X = x)$$

Probability Density Function (pdf) is NOT a probability

- If X is a <u>density random variable</u>, then P(X) is its <u>probability density</u> <u>function (pdf)</u>.
- A probability density is NOT a probability. Instead, we define it as a density $(P(X=x)=\frac{d}{dx}\Pr(X\leq x))$. Thus:

$$0 \le P(X = x)$$
$$1 = \int_{-\infty}^{\infty} P(X = x) dx$$

Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Jointly Random Variables

- Two or three random variables are "jointly random" if they are both outcomes of the same experiment.
- For example, here are the temperature (Y, in °C), and precipitation (X, symbolic) for six days in Urbana:

	X=Temperature (°C)	Y=Precipitation
January 11	4	cloud
January 12	1	cloud
January 13	-2	snow
January 14	-3	cloud
January 15	-3	clear
January 16	4	rain

Joint Distributions

Based on the data on prev slide, here is an estimate of the joint distribution of these two random variables:

P(X=x,Y=y)		Υ				
		snow	rain	cloud	clear	
	-3	0	0	1/6	1/6	
X	-2	1/6	0	0	0	
Α	1	0	0	1/6	0	
	4	0	1/6	1/6	0	

Notation: Vectors and Matrices

- A normal-font capital letter is a random variable, which is a function mapping from the outcome of an experiment to a measurement
- A normal-font small letter is a scalar instance
- A boldface small letter is a vector instance
- A boldface capital letter is a matrix instance

Notation: Vectors and Matrices

P(X = x) is the probability that random variable X takes the value of the vector x. This is just a shorthand for the joint distribution of x_1, \dots, x_n :

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \qquad P(X = \boldsymbol{x}) = P(X_1 = x_1, \dots, X_n = x_n)$$

Similarly, for a random matrix, we could write:

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{m,1} & \cdots & x_{m,n} \end{bmatrix}, \qquad P(X = \mathbf{X}) = P(X_{1,1} = x_{1,1}, \dots, X_{m,n} = x_{m,n})$$

Marginal Distributions

Suppose we know the joint distribution P(X,Y). We want to find the two **marginal distributions** P(X):

If the unwanted variable is discrete, we marginalize by adding:

$$P(X) = \sum_{y} P(X, Y = y)$$

• If the unwanted variable is continuous, we marginalize by integrating:

$$P(X) = \int P(X, Y = y) dy$$

Marginal Distributions

Here are the marginal distributions of the two weather variables:

P(X,Y)	snow	rain	cloud	clear		P(X)
-3	0	0	1/6	1/6		1/3
-2	1/6	0	0	0		1/6
1	0	0	1/6	0		0
4	0	1/6	1/6	0	_	1/3
			•	•		

P(Y)	1/6	1/6	1/2	1/6

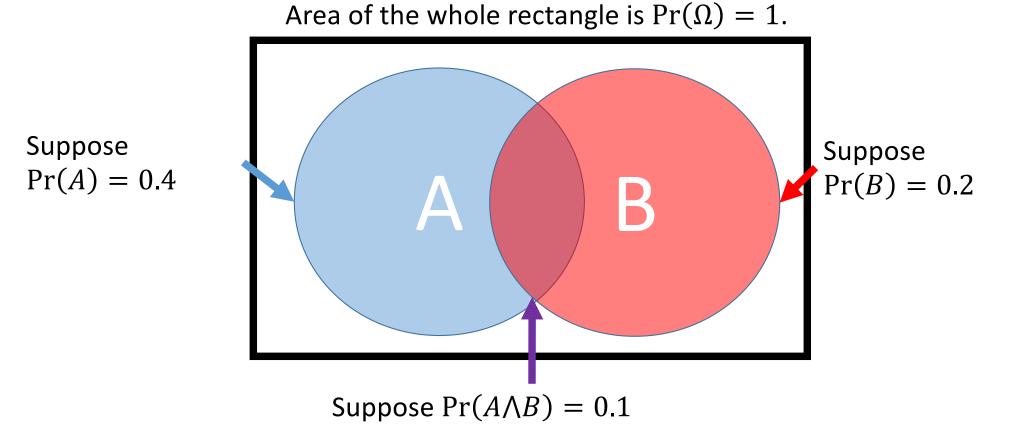
Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Joint and Conditional distributions

- P(X,Y) is the probability (or pdf) that X=x and Y=y, over all x and y. This is called their **joint distribution**.
- P(Y|X) is the probability (or pdf) that Y = y happens, given that X = x happens, over all x and y. This is called the **conditional distribution** of Y given X.

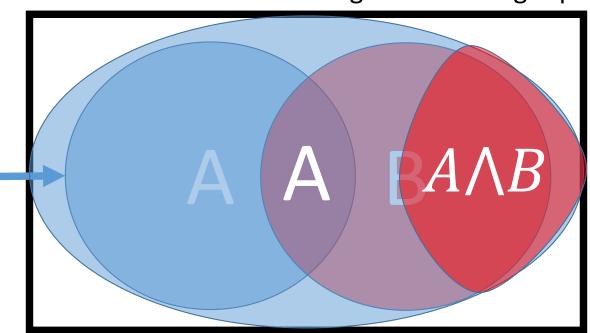
Joint probabilities are usually given in the problem statement



Conditioning events change our knowledge! For example, given that A is true...

Most of the events in this rectangle are no longer possible!

Only the events inside this circle are now possible.



Conditioning events change our knowledge! For example, given that A is true...

If A always occurs, then by the axioms of probability, the probability of A=T is 1. We can say that Pr(A|A)=1.

The probability of B, given A, is the size of the event $A \land B$, expressed as a fraction of the size of the event A:

$$Pr(B|A) = \frac{Pr(A \land B)}{Pr(A)}$$

Joint and Conditional distributions of random variables

- P(X,Y) is the **joint probability distribution** over all possible outcomes P(X=x,Y=y).
- P(X|Y) is the **conditional probability distribution** of outcomes P(X=x|Y=y).
- The <u>conditional</u> is the <u>joint</u> divided by the <u>marginal</u>:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Conditional is the joint divided by the marginal:

$$P(X|Y = \text{cloud}) = \frac{P(X,Y = \text{cloud})}{P(Y = \text{cloud})} = \frac{\begin{bmatrix} \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} \end{bmatrix}}{1/2}$$

	snow	rain	cloud	clear
-3	0	0	1/6	1/6
-2	1/6	0	0	0
1	0	0	1/6	0
4	0	1/6	1/6	0

P(X Y=cloud)
1/3
0
1/3
1/3

Joint = Conditional×Marginal

$$P(X,Y) = P(X|Y)P(Y)$$

Independent Random Variables

Two random variables are said to be independent if:

$$P(X|Y) = P(X)$$

In other words, knowing the value of Y tells you nothing about the value of X.

... and a more useful definition of independence...

Plugging the definition of independence,

$$P(X|Y) = P(X),$$

...into the "Joint = Conditional×Marginal" equation,

$$P(X,Y) = P(X|Y)P(Y)$$

...gives us a more useful definition of independence.

<u>Definition of Independence</u>: Two random variables, X and Y, are independent if and only if

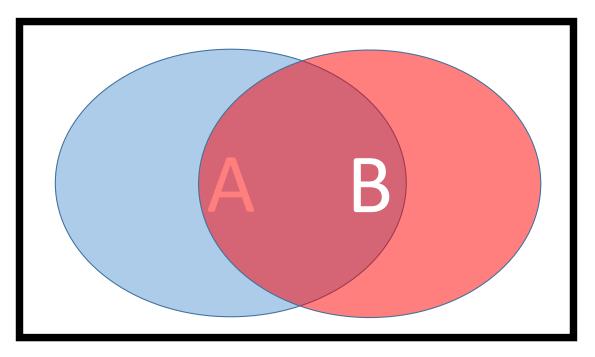
$$P(X,Y) = P(X)P(Y)$$

Independent events

Independent events occur with equal probability, regardless of whether or not the other event has occurred:

$$Pr(A|B) = Pr(A)$$

 $Pr(A \land B) = Pr(A)Pr(B)$



Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Expectation

- The expected value of a function is its weighted average, weighted by its pmf or pdf.
- If X and Y are discrete, then

$$E[f(X,Y)] = \sum_{x,y} f(x,y)P(X = x, Y = y)$$

• If *X* is continuous, then

$$E[f(X,Y)] = \iint_{-\infty}^{\infty} f(x,y)P(X=x,Y=y)dxdy$$

Quiz question

Go to https://us.prairielearn.com/pl/course_instance/129874/
Take the quiz called "20-Jan"

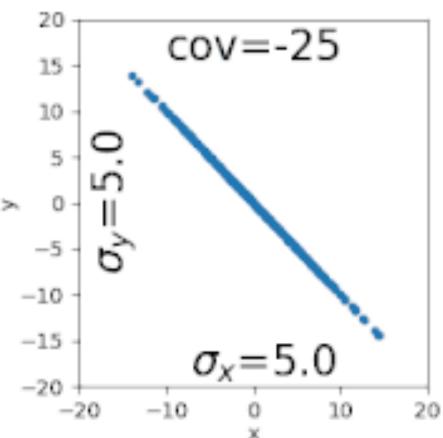
Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Covariance

The covariance of two random variables is the expected product of their deviations:

$$Covar(X, Y)$$
= $E[(X - E[X])(Y - E[Y])]$



Two zero-mean random variables, with variances of 25, and with various values of covariance. Public domain image,

https://commons.wikimedia.org/wiki/File:Varianz.gif

Covariance Matrix

Suppose $X = [X_1, ..., X_n]^T$ is a random vector. Its matrix of variances and covariances (a.k.a. covariance matrix) is

$$\Sigma = E[(X - E[X])(X - E[X])^T] = \begin{bmatrix} Var(X_1) & \cdots & Covar(X_1, X_n) \\ \vdots & \ddots & \vdots \\ Covar(X_1, X_n) & \cdots & Var(X_n) \end{bmatrix}$$

$$= \begin{bmatrix} E[(X_1 - E[X_1])^2] & \cdots & E[(X_1 - E[X_1])(X_n - E[X_n])] \\ \vdots & \ddots & \vdots \\ E[(X_1 - E[X_1])(X_n - E[X_n])] & \cdots & E[(X_n - E[X_n])^2] \end{bmatrix}$$

Summary

Probability Mass and Probability Density

$$P(X = x) = \Pr(X = x)$$
 ... or ... $P(X = x) = \frac{d}{dx} \Pr(X \le x)$

Jointly random variables

$$P(X = \mathbf{x}) = P(X_1 = x_1, \dots, X_n = x_n)$$

Conditional Probability and Independence

$$P(X,Y) = P(X|Y)P(Y)$$

$$P(X|Y) = P(X) \Leftrightarrow P(X,Y) = P(X)P(Y)$$

Expectation

$$E[f(X,Y)] = \sum_{x,y} f(x,y)P(X = x, Y = y) \dots \text{ or } \dots$$
$$E[f(X,Y)] = \iint_{-\infty}^{\infty} f(x,y)P(X = x, Y = y)dxdy$$

Mean, Variance and Covariance

$$\Sigma = E[(X - E[X])(X - E[X])^T]$$