CS 440/ECE 448 Lecture 2: Random Variables

Mark Hasegawa-Johnson, 1/2023
Lecture slides: CCO (0) Pusulin
Images may have other license terms

CC-BY-3.0 Image by Diacritica, 2010
https://commons.wikimedia.org/wiki/File:6sided_dice.jpg

Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Notation: Probability

If an experiment is run an infinite number of times, the probability of event A is the fraction of those times on which event A occurs.

Axiom 1: every event A has a non-negative probability.

$$
\operatorname{Pr}(A) \geq 0
$$

Axiom 2: If an event Ω always occurs, we say it has probability 1 .

$$
\operatorname{Pr}(\Omega)=1
$$

Axiom 3: probability measures behave like set measures.

$$
\operatorname{Pr}(A \bigvee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
$$

Axiom 3: probability measures behave like set measures.
Area of the whole rectangle is $P(\Omega)=1$.

Area of this circle is $P(A)$.

Area of their intersection is $P(A \wedge B)$.
Area of their union is $P(A \bigvee B)=P(A)+P(B)-P(A \wedge B)$

Notation: Random Variables

A random variable is a function that summarizes the output of an experiment. We use capital letters to denote random variables.

- Example: every Friday, Maria brings a cake to her daughter's preschool. X is the number of children who eat the cake.

We use a small letter to denote a particular outcome of the experiment.

- Example: for the last three weeks, each week, 5 children had cake, but this week, only 4 children had cake. Estimate $P(X=x)$ for all possible values of x.

Notation: $P(X=x)$ is a number, but $P(X)$ is a

 distribution- $P(X=4)$ or $P(4)$ is the probability mass or probability density of the outcome " $X=4$." For example:

$$
P(X=4)=\frac{1}{4}
$$

- $P(X)$ is the complete distribution, specifying $P(X=x)$ for all possible values of x. For example:

$$
\begin{array}{|c|c|c|}
\hline x & 4 & 5 \\
\hline P(x) & \frac{1}{4} & \frac{3}{4} \\
\hline
\end{array}
$$

Discrete versus Continuous RVs

- X is a discrete random variable if it can only take countably many different values.
- Example: X is the number of people living in a randomly selected city

$$
X \in\{1,2,3,4, \ldots\}
$$

- Example: X is the first word on a randomly selected page

$$
X \in\{\text { the, and, of, bobcat, ... }\}
$$

- Example: X is the next emoji you will receive on your cellphone
- X is a continuous random variable if it can take uncountably many different values
- Example: X is the energy of the next object to collide with Earth $X \in \mathbb{R}^{+}$(the set of all positive real numbers)

Probability Mass Function (pmf) is a type of probability

- If X is a discrete random variable, then $P(X)$ is its probability mass function (pmf).
- A probability mass is just a probability. $P(X=x)=\operatorname{Pr}(X=x)$ is the just the probability of the outcome " $X=x$." Thus:

$$
\begin{gathered}
0 \leq P(X=x) \\
1=\sum_{x} P(X=x)
\end{gathered}
$$

Probability Density Function (pdf) is NOT a probability

- If X is a density random variable, then $P(X)$ is its probability density function (pdf).
- A probability density is NOT a probability. Instead, we define it as a density $\left(P(X=x)=\frac{d}{d x} \operatorname{Pr}(X \leq x)\right)$. Thus:

$$
\begin{gathered}
0 \leq P(X=x) \\
1=\int_{-\infty}^{\infty} P(X=x) d x
\end{gathered}
$$

Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Jointly Random Variables

- Two or three random variables are "jointly random" if they are both outcomes of the same experiment.
- For example, here are the temperature (Y , in ${ }^{\circ} \mathrm{C}$), and precipitation (X , symbolic) for six days in Urbana:

	$\mathrm{X}=$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{Y}=$ Precipitation
January 11	4	cloud
January 12	1	cloud
January 13	-2	snow
January 14	-3	cloud
January 15	-3	clear
January 16	4	rain

Joint Distributions

Based on the data on prev slide, here is an estimate of the joint distribution of these two random variables:

$P(X=x, Y=y)$		Y			
		snow	rain	cloud	clear
X	-3	0	0	$1 / 6$	$1 / 6$
	-2	$1 / 6$	0	0	0
	1	0	0	$1 / 6$	0
	4	0	$1 / 6$	$1 / 6$	0

Notation: Vectors and Matrices

- A normal-font capital letter is a random variable, which is a function mapping from the outcome of an experiment to a measurement
- A normal-font small letter is a scalar instance
- A boldface small letter is a vector instance
- A boldface capital letter is a matrix instance

Notation: Vectors and Matrices

$P(X=\boldsymbol{x})$ is the probability that random variable X takes the value of the vector \boldsymbol{x}. This is just a shorthand for the joint distribution of x_{1}, \cdots, x_{n} :

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad P(X=\boldsymbol{x})=P\left(X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right)
$$

Similarly, for a random matrix, we could write:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n}
\end{array}\right], \quad P(X=\boldsymbol{X})=P\left(X_{1,1}=x_{1,1}, \ldots, X_{m, n}=x_{m, n}\right)
$$

Marginal Distributions

Suppose we know the joint distribution $P(X, Y)$. We want to find the two marginal distributions $P(X)$:

- If the unwanted variable is discrete, we marginalize by adding:

$$
P(X)=\sum_{y} P(X, Y=y)
$$

- If the unwanted variable is continuous, we marginalize by integrating:

$$
P(X)=\int P(X, Y=y) d y
$$

Marginal Distributions

Here are the marginal distributions of the two weather variables:

$P(X, Y)$	snow	rain	cloud	clear	$P(X)$
-3	0	0	$1 / 6$	$1 / 6$	
-2	$1 / 6$	0	0	0	
1	0	0	$1 / 6$	0	
4	0	$1 / 6$	$1 / 6$	0	$1 / 3$

Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Joint and Conditional distributions

- $P(X, Y)$ is the probability (or pdf) that $X=x$ and $Y=y$, over all x and y. This is called their joint distribution.
- $P(Y \mid X)$ is the probability (or pdf) that $Y=y$ happens, given that $X=$ x happens, over all x and y. This is called the conditional distribution of Y given X.

Joint probabilities are usually given in the problem statement

Area of the whole rectangle is $\operatorname{Pr}(\Omega)=1$.

Suppose $\operatorname{Pr}(A \wedge B)=0.1$

Conditioning events change our knowledge! For example, given that A is true...

Only the events inside this circle are now possible.

Most of the events in this rectangle are no longer possible!

Conditioning events change our knowledge! For example, given that A is true...

If A always occurs, then by the axioms of probability, the probability of $\mathrm{A}=\mathrm{T}$ is 1 . We can say that
$\operatorname{Pr}(A \mid A)=1$.

The probability of
B, given A, is the size of the event $A \wedge B$, expressed as a fraction of the size of the event A:
$\operatorname{Pr}(B \mid A)$
$=$
$\frac{\operatorname{Pr}(A \wedge B)}{\operatorname{Pr}(A)}$

Joint and Conditional distributions of random variables

- $P(X, Y)$ is the joint probability distribution over all possible outcomes $P(X=x, Y=y)$.
- $P(X \mid Y)$ is the conditional probability distribution of outcomes $P(X=x \mid Y=y)$.
- The conditional is the joint divided by the marginal:

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Conditional is the joint divided by the marginal:

Joint $=$ Conditional \times Marginal

$$
P(X, Y)=P(X \mid Y) P(Y)
$$

Independent Random Variables
Two random variables are said to be independent if:

$$
P(X \mid Y)=P(X)
$$

In other words, knowing the value of Y tells you nothing about the value of X.
... and a more useful definition of independence...

Plugging the definition of independence,

$$
P(X \mid Y)=P(X)
$$

...into the "Joint $=$ Conditional \times Marginal" equation,

$$
P(X, Y)=P(X \mid Y) P(Y)
$$

...gives us a more useful definition of independence.
Definition of Independence: Two random variables, X and Y, are independent if and only if

$$
P(X, Y)=P(X) P(Y)
$$

Independent events

Independent events occur with equal probability, regardless of whether or not the other event has occurred:

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) \\
\operatorname{Pr}(A \wedge B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
\end{gathered}
$$

Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Expectation

- The expected value of a function is its weighted average, weighted by its pmf or pdf.
- If X and Y are discrete, then

$$
E[f(X, Y)]=\sum_{x, y} f(x, y) P(X=x, Y=y)
$$

- If X is continuous, then

$$
E[f(X, Y)]=\iint_{-\infty}^{\infty} f(x, y) P(X=x, Y=y) d x d y
$$

Quiz question

Go to https://us.prairielearn.com/pl/course instance/129874/
Take the quiz called " $20-\mathrm{Jan}$ "

Outline

- Notation: Probability, Probability Mass, Probability Density
- Jointly random variables
- Conditional Probability and Independence
- Expectation
- Covariance Matrix

Covariance

The covariance of two random variables is the expected product of their deviations:

$$
\begin{aligned}
& \operatorname{Covar}(X, Y) \\
& =E[(X-E[X])(Y-E[Y])]
\end{aligned}
$$

Two zero-mean random variables, with variances of 25 , and with various values of covariance.
Public domain image,
https://commons.wikimedia.org/wiki/File:Varianz.gif

Covariance Matrix

Suppose $X=\left[X_{1}, \ldots, X_{n}\right]^{T}$ is a random vector. Its matrix of variances and covariances (a.k.a. covariance matrix) is

$$
\begin{aligned}
& \Sigma=E\left[(X-E[X])(X-E[X])^{T}\right]=\left[\begin{array}{ccc}
\operatorname{Var}\left(X_{1}\right) & \cdots & \operatorname{Covar}\left(X_{1}, X_{n}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{Covar}\left(X_{1}, X_{n}\right) & \cdots & \operatorname{Var}\left(X_{n}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
E\left[\left(X_{1}-E\left[X_{1}\right]\right)^{2}\right] & \cdots & E\left[\left(X_{1}-E\left[X_{1}\right]\right)\left(X_{n}-E\left[X_{n}\right]\right)\right] \\
\vdots & \ddots & \vdots \\
E\left[\left(X_{1}-E\left[X_{1}\right]\right)\left(X_{n}-E\left[X_{n}\right]\right)\right] & \cdots & E\left[\left(X_{n}-E\left[X_{n}\right]\right)^{2}\right]
\end{array}\right]
\end{aligned}
$$

Summary

- Probability Mass and Probability Density

$$
P(X=x)=\operatorname{Pr}(X=x) \quad \ldots \quad \text { or } \quad \ldots \quad P(X=x)=\frac{d}{d x} \operatorname{Pr}(X \leq x)
$$

- Jointly random variables

$$
P(X=\boldsymbol{x})=P\left(X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right)
$$

- Conditional Probability and Independence

$$
\begin{gathered}
P(X, Y)=P(X \mid Y) P(Y) \\
P(X \mid Y)=P(X) \Leftrightarrow P(X, Y)=P(X) P(Y)
\end{gathered}
$$

- Expectation

$$
\begin{gathered}
E[f(X, Y)]=\sum_{x, y} f(x, y) P(X=x, Y=y) \quad \ldots \quad \text { or } \quad \ldots \\
E[f(X, Y)]=\iint_{-\infty}^{\infty} f(x, y) P(X=x, Y=y) d x d y
\end{gathered}
$$

- Mean, Variance and Covariance

$$
\Sigma=E\left[(X-E[X])(X-E[X])^{T}\right]
$$

