University of Illinois at Urbana-Champaign
 CS440/ECE448 Artificial Intelligence
 Practice Exam 2 Spring 2024

The exam will be April 15-17, 2024

Instructions

- The exam will be held at CBTF.
- The exam will contain eight multiple-choice questions, one from each of the following eight topics: search (lectures 18-19), Markov decision process (lecture 20), minimax (lecture 21), expectiminimax (lecture 22), static game theory (lecture 23), logic (lectures 26-27), vector semantics (lectures 28-29), and robotics (lecture 30). Lectures 24 and 25 are not covered. Each of the eight topics is represented in this practice exam, but the number of questions available on each topic is somewhat variable.
- No book, notes, or calculator will be allowed.
- The following formula page, or one like it, will be available to you attached to the online exam.

Possibly Useful Formulas

Admissible: $\hat{h}(n) \leq h(n)$
Consistent: $\hat{h}(n)-\hat{h}(m) \leq h(n, m)$
Value Iteration: $u_{i}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{i-1}(s)$
Policy Evaluation: $u_{\pi}(s)=r(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) u_{\pi}\left(s^{\prime}\right)$
Policy Improvement: $\pi_{i+1}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u_{\pi_{i}}\left(s^{\prime}\right)$
Alpha-Beta Max Node: $v=\max (v$, child $) ; \quad \alpha=\max (\alpha$, child $)$
Alpha-Beta Min Node: $v=\min (v$, child $) ; \quad \beta=\min (\beta$, child $)$
Expectiminimax: $u(s)= \begin{cases}\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid a, a\right) u\left(s^{\prime}\right) & s \in \max \text { states } \\ \min _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid a, a\right) u\left(s^{\prime}\right) & s \in \min \text { states }\end{cases}$
Mixed Nash Equilibrium: $\quad \begin{aligned} & P(A=0) r_{B}(0,0)+P(A=1) r_{B}(1,0)=P(A=0) r_{B}(0,1)+P(A=1) r_{B}(1,1) \\ & P(B=0) r_{A}(0,0)+P(B=1) r_{A}(0,1)=P(B=0) r_{A}(1,0)+P(B=1) r_{A}(1,1)\end{aligned}$
$P(B=0) r_{A}(0,0)+P(B=1) r_{A}(0,1)=P(B=0) r_{A}(1,0)+P(B=1) r_{A}(1,1)$
Unification: $S:\left\{\mathscr{V}_{P}, \mathscr{V}_{Q}\right\} \rightarrow\left\{\mathscr{V}_{Q}, \mathscr{C}\right\}$ such that $S(P)=S(Q)=U$
CBOW Generative: $\mathscr{L}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{j=-c, j \neq 0}^{c} \ln \frac{\exp \left(\mathbf{v}_{t}^{T} \mathbf{v}_{t_{j}}\right)}{\sum_{\mathbf{v} \in \mathscr{V}} \exp \left(\mathbf{v}^{T} \mathbf{v}_{t+j}\right)}$
Skip-gram Contrastive: $\mathscr{L}=-\frac{1}{T} \sum_{t=1}^{T}\left(\sum_{\mathbf{v}^{\prime} \in \mathscr{\mathscr { O }}+\left(w_{t}\right)} \ln \frac{1}{1+e^{-\mathbf{v}^{\prime} \mathbf{v}_{t}}}+\sum_{\mathbf{v}^{\prime} \in \mathscr{\mathscr { D }}-\left(w_{t}\right)} \ln \frac{1}{1+e^{\mathbf{v}^{\prime} \mathbf{v}_{t}}}\right)$
Transformer: $\mathbf{c}_{t}=\sum_{s} \alpha(t, s) \mathbf{v}_{s}$
Attention: $\alpha(t, s)=\frac{\exp \left(\mathbf{q}_{t}^{T} \mathbf{k}_{s}\right)}{\sum_{s^{\prime}} \exp \left(\mathbf{q}_{t}^{T} \mathbf{k}_{s^{\prime}}\right)}$

1 Search

Question 1 (0 points)

In the maze shown above, nodes are named by their (y, x) coordinates, where y is the row number (starting from the bottom), and x is the column number (starting from the left). A robot is trying to find a path from the start node, $(0,2)$ (labeled " S "), to the goal node, $(0,5)$ (labeled " G "). It uses A* search, with Manhattan distance as a heuristic. After nodes $(0,3)$ and $(1,2)$ have been expanded, there are two copies of nodes $(1,3)$ on the frontier, one with $(0,3)$ as its parent, and one with $(1,2)$ as its parent. Which of these two copies was placed on the frontier first? Why?

Question 2 (0 points)
Prove that every consistent A* search heuristic is also admissible.

Question 3 (0 points)

A typical freight management problem seeks to deliver several large objects from point A to point B using a truck that can carry up to M kilograms. First, you weigh each of the objects, so that you know its mass. Then you use the following search problem to devise an optimal plan:

- State: $S=$ a list of the objects that have not yet been delivered.
- Action: Load a set of objects onto the truck, take them from A to B, then return the truck from B to A.
- Cost: Each trip from A to B has a cost of 1, regardless of the weight of the objects on the truck. Your goal is simply to minimize the number of trips.

Define a nonzero heuristic for this problem, and prove that your heuristic is admissible.

Question 4 (0 points)

Consider the following search graph. The starting state is A, the goal state is G, and the cost of each possible action is shown on the corresponding edge:

You are considering trying to implement A^{*} search over this graph. You are trying to decide whether to use $h_{1}(n)$ or $h_{2}(n)$ as the heuristic, where $h_{1}(n)$ and $h_{2}(n)$ are as given in the following table:

	A	B	C	D	E	F	G
$h_{1}(n):$	4	5	8	2	2	1	0
$h_{2}(n):$	4	5	8	3	2	1	0

(a) Suppose you are using an explored set to prevent repeated states, i.e., you will only expand a state if you have never expanded it before. Which of these two heuristics is better to use, and why?
(b) Your friend convinces you to use an explored dict, i.e., you will only expand a state if you have never expanded it before with a smaller $g(n)$. Which of these two heuristics is better to use, and why?

Question 5 (0 points)
Imagine a maze with only four possible positions, numbered 1 through 4 in the following diagram. Position 2 is the start position (denoted S in the diagram below), while positions 1, 3, and 4 each contain a goal (denoted as G_{1}, G_{2}, and G_{3} in the diagram below). Search terminates when the agent finds a path that reaches all three goals, using the smallest possible number of steps.

(a) Define a notation for the state of this agent. How many distinct non-terminal states are there?
(b) Draw a search tree out to a depth of 3 moves, including repeated states. Circle repeated states.
(c) For A* search, one possible heuristic, h_{1}, is the Manhattan distance from the agent to the nearest goal that has not yet been reached. Prove that h_{1} is consistent.
(d) Another possible heuristic is based on the Manhattan distance $M[n, g]$ between two positions, and is given by

$$
h_{2}[n]=M\left[G_{1}, G_{2}\right]+M\left[G_{2}, G_{3}\right]+M\left[G_{3}, G_{1}\right]
$$

that is, h_{2} is the sum of the Manhattan distances from goal 1 to goal 2, then to goal 3, then back to goal 1. Prove that h_{2} is not admissible.
(e) Prove that $h_{2}[n]$ is dominant to $h_{1}[n]$.

Question 6 (0 points)
For each type of maze described below, specify the typical-case time complexity and space complexity of both breadth-first-search (BFS) and depth-first-search (DFS). Assume that both BFS and DFS return the first solution path they find.
(a) The Albuquerque maze has $b=3$ possible directions that you can take at each intersection. No path is longer than $m=25$ steps. There is only one solution, which is known to require exactly $d=25$ steps.
(b) The Belmont maze has $b=3$ possible directions that you can take at each intersection. No path is longer than $m=25$ steps. About half of all available paths are considered solutions to the maze.
(c) The Crazytown maze has $b=3$ possible directions that you can take at each intersection. The maze is infinite in size, so some paths have infinite length. There is only one solution, which is known to require $d=25$ steps.

Question 7 (0 points)
Consider the following maze. There are 11 possible positions, numbered 1 through 11. The agent starts in the position marked S (position number 3). From any position, there are from one to four possible moves, depending on position: Left, Right, Up, and/or Down. The agent's goal is to find the shortest path that will touch both of the goals (G_{1} and G_{2}).

1	2	3	4
G_{1}	S		
5		6	7
G_{2}			
8	9	10	11

(a) Define a notation for the state of this agent. How many distinct non-terminal states are there?
(b) Draw a search tree out to a depth of 2 moves, including repeated states. Circle repeated states.
(c) For A* search, one possible heuristic, h_{1}, is the number of goals not yet reached. Prove that h_{1} is consistent.
(d) Another possible heuristic is based on the Manhattan distance $M[n, g]$ between two positions, and is given by

$$
h_{2}[n]=M\left[n, G_{1}\right]+M\left[G_{1}, G_{2}\right]
$$

that is, h_{2} is the sum of the Manhattan distance from the current position to G_{1}, plus the Manhattan distance from G_{1} to G_{2}. Prove that h_{2} is not admissible.
(e) Prove that $h_{2}[n]$ is dominant to $h_{1}[n]$.

Question 8 (0 points)
Refer to the maze shown below. Here, 'M' represents Mario, 'P' represents Peach, and the goal of the game is to get Mario and Peach to find each other. In each move, both Mario and Peach take turns. For example, one move would consist of Peach moving a block to the bottom from her current position, and Mario moving one block to the left from his current position. Standing still is also an option.

(a) Describe state and action representations for this problem.
(b) What is the branching factor of the search tree?
(c) What is the size of the state space?
(d) Describe an admissible heuristic for this problem.

Question 9 (0 points)
Consider the search problem with the following state space:

S denotes the start state, G denotes the goal state, and step costs are written next to each arc. Assume that ties are broken alphabetically (i.e., if there are two states with equal priority on the frontier, the state that comes first alphabetically should be visited first).
(a) What path would BFS return for this problem?
(b) What path would DFS return for this problem?
(c) What path would UCS return for this problem?
(d) Consider the heuristics for this problem shown in the table below.

State	h_{1}	h_{2}
S	5	4
A	3	2
B	6	6
C	2	1
D	3	3
G	0	0

i. Is h1 admissible? Is it consistent?
ii. Is h2 admissible? Is it consistent?

In the maze shown above, nodes are named by their (x, y) coordinates, where x is the column number (starting from the left), and y is the row number (starting from the bottom), A robot is trying to find a path from the start node, $(1,4)$ (labeled " S "), to the goal node, $(2,1)$ (labeled " G "). Every horizontal or vertical step has a cost of 1 unit; every diagonal step has a cost of $\sqrt{2}$ units. Prove that Manhattan distance is not a consistent heuristic for this problem.

Question 11 (0 points)

Discuss the relative strengths and weaknesses of breadth-first search vs. depth-first search for AI problems.

Question 12 (0 points)

In the tree search formulation, why do we restrict step costs to be non-negative?

Question 13 (0 points)

What is the distinction between a world state and a search tree node?

Question 14 (0 points)
How do we avoid repeated states during tree search?

Question 15 (0 points)

You are searching a maze in which positions are denoted by their (x, y) coordinate pairs, and in which the start node is $s=(4,4)$ and the goal node is $g=(0,0)$. Each step consists of one move in the horizontal or vertical direction; diagonal steps are not allowed. Your friend proposes implementing an A* search algorithm using the following heuristic:

$$
h((x, y))=|\sin (x)|+|\sin (y)|
$$

Prove that $h((x, y))$ is an admissible heuristic for this problem.

2 Minimax

Question 16 (8 points)
The following minimax tree shows all possible outcomes of the RED-BLUE game. In this game, Max plays first, then Min, then Max. Each player, when it's their turn, chooses either a blue stone (B) or a red stone (R); after three turns, Max wins the number of points shown (negative scores indicate a win for Min).

(a) (3 points) Max could be a Reflex Agent, following a set of predefined IF-THEN rules, and could still play optimally against Min, even if Min is not rational. To do so, Max needs just three rules of the form "If the stones already chosen are ___ then choose a ___ stone." Write those three rules in that form.
(b) (2 points) Recall that an $\alpha-\beta$ search prunes the largest possible number of moves if there is extra information available to the players that permits them to evaluate the moves in the best possible order. IN GENERAL (not just for this game tree),

- In what order should the moves available to MAX be evaluated, in order to prune as many moves as possible?
- In what order should the moves available to MIN be evaluated, in order to prune as many moves as possible?
(c) (3 points) Re-draw the minimax tree for the RED-BLUE game so that, if moves are always evaluated from left to right, the $\alpha-\beta$ search only needs to evaluate 5 of the 8 terminal states.

Question 17 (0 points)

Two players, MAX and MIN, are playing a game. The game tree is shown below. Upward-pointing triangles denote decisions by MAX; downward-pointing triangles denote decisions by MIN. Numbers on the terminal nodes show the final score: MAX seeks to maximize the final score, MIN seeks to minimize the final score.

(a) Write the minimax value of each nonterminal node (each upward-pointing or downward-pointing triangle) next to it.
(b) Suppose that the minimax values of the nodes at each level are computed in order, from left to right. Draw an X through any edge that would be pruned (eliminated from consideration) using alpha-beta pruning.
(c) In this game, alpha-beta pruning did not change the minimax value of the start node. Is there any deterministic two-player game tree in which alpha-beta pruning changes the minimax value of the start node? Why or why not?

Question 18 (0 points)

Consider the following game tree (MAX moves first):

(a) Write down the minimax value of every non-terminal node next to that node.
(b) How will the game proceed, assuming both players play optimally?
(c) Cross out the branches that do not need to be examined by alpha-beta search in order to find the minimax value of the top node, assuming that moves are considered in the non-optimal order shown.
(d) Suppose that a heuristic was available that could re-order the moves of both max $\left(M_{1}, M_{2}, M_{3}, M_{4}\right)$ and $\min \left(M_{11}, \ldots, M_{44}\right)$ in order to force the alpha-beta algorithm to prune as many nodes as possible. Which max move would be considered first: M_{1}, M_{2}, M_{3}, or M_{4} ? Which of the min moves (M_{11}, \ldots, M_{44}) would have to be considered?

A B
Consider a game in which Min plays first, and on the first move, Min must draw either the line segment $\overline{A B}$ or the line segment $\overline{A D}$. Thereafter players take turns; on each turn after the first one, the person playing must draw one line segment connecting any two of the four corners $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D . The game ends when one of the players draws a line segment that touches or crosses any previously-drawn line segment; at that point, the other player wins a number of points equal to the total number of line segments that have been drawn. Draw a complete game tree, indicating each move by the letters of the endpoints of the line segment drawn by that player. If many different moves result in the same subtree, draw just one edge that lists all of those moves. Indicate a minimax sequence of moves, and specify the minimax value of the game.

Question 20 (0 points)
Consider a game in which Max and Min each start with three stones. Min plays first. On their turn, each player must discard one, two, or three stones. The number of stones a player discards must be greater than or equal to the number of stones their opponent discarded on the immediate preceding turn (if a player does not have enough stones to satisfy this rule, they must discard all of their remaining stones). When one player loses their last stone, the other player wins a number of points equal to the number of stones they have not yet discarded. The figure below shows the game tree for this game. In each triangle (each Min or Max node), enter a number specifying the value of that node. Specify the minimax value of the game. Indicate a minimax move sequence (there are several different sequences that a pair of optimal players might play; specify one of those sequences).

Question 21 (0 points)

Consider a game in which Min starts with 3 stones on the edges of a square (shown above as "m0,m1" and "m2"), and Max starts with 2 stones on the corners of the square (shown above as "M0" and "M1"). Min plays first. On their turn, each player removes one of their own stones. The game ends when one player has any stone with no remaining neighbors; that player wins a number of points equal to the number of stones they still have on the board. The figure below shows the game tree for this game. In each triangle (each Min or Max node), enter a number specifying the value of that node. Specify the minimax value of the game. Indicate a minimax move sequence (there are several different sequences that a pair of optimal players might play; specify one of those sequences).

Question 22 (0 points)

What are the main challenges of adversarial search as contrasted with single-agent search? What are some algorithmic similarities and differences?

3 Expectiminimax

Question 23 (0 points)

Consider the following game, called "High/Low." There is an infinite deck of cards, half of which are 2's, one quarter are 3's, and one quarter are 4's. The game starts with a 3 showing. After each card, you say "High" or "Low," and a new card is flipped. If you are correct (e.g., you say "High" and then the next card is higher than the one showing), you win the points shown on the new card. If there is a tie (the next card equals the one showing), you get zero points. If you are wrong (e.g., you say "High" and then the next card is lower than the one showing), then you lose the amount of the card that was already showing.

Draw the expectimax tree for the first round of this game and write down the expected utility of every node. What is the optimal policy assuming the game only lasts one round?

Question $24 \quad$ (5 points)
Consider a game with eight cards $(c \in\{1,2,3,4,5,6,7,8\})$, sorted onto the table in four stacks of two cards each. MAX and MIN each know the contents of each stack, but they don't know which card is on top. The game proceeds as follows. First, MAX chooses either the left or the right pair of stacks. Second, MIN chooses either the left or the right stack, within the pair that MAX chose. Finally, the top card is revealed. MAX receives the face value of the card (c), and MIN receives $9-c$. The resulting expectiminimax tree is as follows:

(a) (2 points) Assume that the two cards in each stack are equally likely. What is the value of the top MAX node?
(b) (3 points) Consider the following rule change: after MAX chooses a pair of stacks, he is permitted to look at the top card in any one stack. He must show the card to MIN, then replace it, so that it remains the top card in that stack. Define the belief state, b, to be the set of all possible outcomes of the game, i.e., the starting belief state is the set $b=\{1,2,3,4,5,6,7,8\}$; the PREDICT operation modifies the belief state based on the action of a player, and the OBSERVE operation modifies the belief state based on MAX's observation. Suppose MAX chooses the action R. He then turns up the top card in the rightmost deck, revealing it to be a 7 . What is the resulting belief state?

Question 25 (0 points)

Consider the following expectiminimax tree:

Circle nodes are chance nodes, the top node is a min node, and the bottom nodes are max nodes.
(a) For each circle, calculate the node values, as per expectiminimax definition.
(b) Which action should the min player take?

Question 26 (0 points)
What additional difficulties does dice throwing or other sources of uncertainty introduce into a game?

Question 27 (0 points)

How can randomness be incorporated into a game tree? How about partial observability (imperfect information)?

4 Markov Decision Processes

Question 28 (7 points)

ATARA is an Automatic Telephone-based Airplane Reservation Agent.
In order to make an airplane reservation, ATARA needs to learn the user's starting city, ending city, and date of travel (she always asks in that order). When she starts each dialog, she knows none of these things.

During each of her dialog turns, ATARA has the option of asking for 1 or 2 pieces of information. Unfortunately, her speech recognizer makes mistakes. If she asks for 1 piece of information, she always gets it. If she asks for 2 pieces of information, then she gets both pieces of information with probability $\left(\frac{1}{2}\right)$, but with probability $\left(\frac{1}{2}\right)$, she gets nothing.
ATARA receives a reward of $R(s)=10$, and ends the dialog, when she has correctly recognized all 3 pieces of information. Otherwise, she gets a reward of $R(s)=-1$ for each dialog turn during which she has not finished the dialog.
(a) (1 point) What is the set of states for this Markov decision process?
(b) (1 point) What is the set of actions?
(c) (3 points) Write the transition probability table $P\left(s^{\prime} \mid s, a\right)$.
(d) (2 points) Use value iteration to find $U(s)$, the utility of each state, assuming a discount factor of $\gamma=1$.

Question 29 (0 points)

Consider an MDP with two states $(s \in\{0,1\}$), two actions ($a \in\{0,1\}$), with rewards of $R(0)=-10$ and $R(1)=10$, and with the following transition probabilities:

s^{\prime}	$P\left(s^{\prime} \mid s=0, a=0\right)$	$P\left(s^{\prime} \mid s=0, a=1\right)$	$P\left(s^{\prime} \mid s=1, a=0\right)$	$P\left(s^{\prime} \mid s=1, a=1\right)$
0	0.4	0.7	0.9	0.2
1	0.6	0.3	0.1	0.8

Consider trying to solve for the utilities of the two states, $U(0)$ and $U(1)$, assuming $\gamma=\frac{1}{2}$, using policy iteration. Consider starting with the policy $\pi_{1}(0)=0, \pi_{1}(1)=1$. Write two equations that could be solved to find the policy-dependent utilities $U_{1}(0)$ and $U_{1}(1)$ given this policy. Write your equations in terms of the variables $R(0), R(1), P(0 \mid 0,0), P(1 \mid 0,0), P(0 \mid 0,1), P(1 \mid 0,1), P(0 \mid 1,0), P(1 \mid 1,0), P(0 \mid 1,1)$, $P(1 \mid 1,1)$, and/or γ first, then substitute in the provided numerical values.

Question 30 (0 points)
After t iterations of the "Value Iteration" algorithm, the estimated utility $U(s)$ is a summation including terms $R\left(s^{\prime}\right)$ for the set of states s^{\prime} that can be reached from state s in at most $t-1$ steps.
\bigcirc True
O False
Explain:

Question 31 (0 points)

Consider an MDP with two states $(s \in\{0,1\})$, two actions $(a \in\{0,1\})$, with rewards of $R(0)=-10$ and $R(1)=10$, and with the following transition probabilities:

s^{\prime}	$P\left(s^{\prime} \mid s=0, a=0\right)$	$P\left(s^{\prime} \mid s=0, a=1\right)$	$P\left(s^{\prime} \mid s=1, a=0\right)$	$P\left(s^{\prime} \mid s=1, a=1\right)$
0	0.4	0.7	0.9	0.2
1	0.6	0.3	0.1	0.8

Consider trying to solve for the utilities of the two states, $U(0)$ and $U(1)$, assuming $\gamma=\frac{1}{2}$, using value iteration. Consider starting with the values $U_{1}(0)=R(0)=-10, U_{1}(1)=R(1)=10$. Write two equations that could be solved to find the second-iteration values $U_{2}(0)$ and $U_{2}(1)$. Write your equations in terms of the variables $R(0), R(1), U_{1}(0), U_{1}(1), P(0 \mid 0,0), P(1 \mid 0,0), P(0 \mid 0,1), P(1 \mid 0,1), P(0 \mid 1,0)$, $P(1 \mid 1,0), P(0 \mid 1,1), P(1 \mid 1,1)$ and/or γ first, then substitute in the provided numerical values.

	Simplified GridWorld	
	Column Number	
	1	2
1	-0.04	-0.04
2	-1.00	1.00
3	0.00	-0.04

Question 32 (0 points)

Consider a simplified version of GridWorld, shown above. The grid above shows the reward, $R(s)$, associated with each state. The robot starts in the state with $R(s)=0.00$; if it reaches either the state with $R(s)=1.00$ or $R(s)=-1.00$, the game ends.

The transition probabilities are simpler than the ones used in lecture. Let the action variable, a, denote the state to which the robot is trying to move. If the robot tries to move out of the maze, it always stays in the state where it started. If the robot tries to move to any state that is a neighbor of the state it currently occupies, then it either succeeds (with probability 0.8), or else it remains in the same state (with probability 0.2). To put the same transition probabilities in the form of an equation, we could write:

$$
P\left(s^{\prime} \mid s, a\right)= \begin{cases}0.8 & s^{\prime}=a, a \in \operatorname{NEIGHBORS}(s) \\ 0.2 & s^{\prime}=s \\ 0 & \text { otherwise }\end{cases}
$$

After one round of value iteration, $U_{1}(s)=R(s)$.
(a) After the second round of value iteration, with discount factor $\gamma=1$, what are the values of all of the states? In other words, what is $U_{2}(s)$ for each of the six states? List the six values, in left-to-right, top-to-bottom order.
(b) After how many rounds of value iteration (at what value of t) will U_{t} (START), the value of the starting state, become positive for the first time?

5 Game Theory

Question 33 (0 points)

The "Battle of the Species" game is defined as follows. Imagine a cat and a dog have agreed to meet for the evening, but they forgot whether they were going to meet at a frisbee field or an aquarium. The dog prefers the frisbee field and the cat prefers the aquarium. The payoff for each one's preferred activity is 4 and the payoff for the non-preferred activity is 3 - assuming the cat and the dog end up at the same place. If they end up at different places, each gets a 1 if they are at their preferred place, and 0 if they are at their non-preferred place.
(a) Give the normal form (matrix) representation of the game.
(b) Find dominant strategies (if any). Briefly explain your answer.
(c) Find pure strategy equilibria (if any). Briefly explain your answer.

Question 34 (0 points)
Suppose that both Alice and Bob want to go from one place to another. There are two routes R1 and R2. The utility of a route is inversely proportional to the number of cars on the road. For instance, if both Alice and Bob choose route R1, the utility of R1 for each of them is $1 / 2$.
(a) Write out the payoff matrix.
(b) Is this a zero-sum game? Why or why not?
(c) Find dominant strategies, if any. If there are no dominant strategies, explain why not.
(d) Find pure strategy equilibria, if any. If there are no pure strategy equilibria, explain why not.
(e) Find the mixed strategy equilibrium.

Question 35 (0 points)

Consider the following game:

	Player A: Action 1	Player A: Action 2
Player B:	$\mathrm{A}=3$	$\mathrm{~A}=0$
Action 1	$\mathrm{B}=2$	$\mathrm{~B}=0$
Player B:	$\mathrm{A}=1$	$\mathrm{~A}=2$
Action 2	$\mathrm{B}=1$	$\mathrm{~B}=3$

(a) Find dominant strategies (if any).
(b) Find pure strategy equilibria (if any).

Question 36 (0 points)
In each square, the first number refers to payoff for the player whose moves are shown on the row-label, the second number refers to payoff for the player shown on the column label.

	A^{\prime}	B^{\prime}	C^{\prime}
A	0,0	25,40	5,10
B	40,25	0,0	5,15
C	10,5	15,5	10,10

(a) Are there any dominant strategies? If so, what are they? If not, why not?
(b) Are there any pure-strategy Nash equilibria? If so, what are they? If not, why not?
(c) Are there any Pareto-optimal solutions? If so, what are they? If not, why not?

6 Logic

Question 37 (0 points)

Consider the problem of trying to prove that birds aren't real. You have the following goalset:

$$
\mathscr{G}=\{\text { NOT-REAL }(\text { birds })\}
$$

In the attempt to prove your goalset, you will make use of the following rule database:

$$
\mathscr{D}=\left\{\begin{aligned}
\operatorname{HAVE}(u, \text { wings }) & \Rightarrow \operatorname{FLY}(u) \\
\operatorname{HAVE}(x, \text { feathers }) & \Rightarrow \operatorname{HAVE}(x, \text { scales }) \\
\operatorname{FLY}(y) \wedge \operatorname{HAVE}(y, \text { scales }) & \Rightarrow \operatorname{NOT}-\operatorname{REAL}(y)
\end{aligned}\right\}
$$

(a) After one step of backward chaining, what is the goalset?
(b) There are two different goalsets that might result from the second step of backward chaining. What are they?

Question 38 (0 points)
u, v, w, x, y, and z are variables. You are trying to determine whether or not it's possible to perform a step of backward-chaining using the rule $T=\operatorname{Sings}(u$, folkmusic $) \Rightarrow \operatorname{Plays}(u$, guitar $)$. Your goalset, \mathscr{G}, currently includes the following goals:

$$
\mathscr{G}=\left\{\begin{array}{c}
P=\text { Eats }(\text { tiger }, \text { cellphone }) \\
Q=\exists v: \text { Plays }(\text { anne }, v) \\
R=\exists w: \text { Plays }(w, \text { flute }) \\
S=\exists x: \operatorname{Zambonis}(x, \text { icerink })
\end{array}\right\}
$$

Which proposition (P, Q, R, or S) can be unified with the consequent of T ? What is the resulting unified proposition, what is the resulting substitution dictionary, and what new fact is added to the goalset?

Question 39 (0 points)
Consider the problem of trying to prove that Chicago is a city. Your goalset is the theorem:

$$
\mathscr{G}=\{\operatorname{CITY}(\text { chicago })\}
$$

In the attempt to prove your goalset, you will use forward chaining, starting from the following fact database:

$$
\mathscr{D}=\left\{\begin{array}{ll}
P_{1}: & \neg \operatorname{COUNTRY}(x) \wedge \operatorname{POPULATION}(x, y) \wedge \operatorname{LARGER}(y, 10000) \Rightarrow \operatorname{CITY}(x) \\
P_{2}: & \text { POPULATION }(\text { chicago }, 7000000) \\
P_{3}: & \text { LARGER }(7000000,10000) \\
P_{4}: & \text { PART-OF }(u, v) \wedge \operatorname{COUNTRY}(v) \Rightarrow \neg \operatorname{COUNTRY}(u) \\
P_{5}: & \text { PART-OF }(\text { chicago }, \text { usa }) \\
P_{6}: & \text { COUNTRY }(\text { usa })
\end{array}\right\}
$$

Suppose that the first forward-chaining step determines that the consequent of P_{4} can be unified with one of the antecedents of P_{1}. What new fact is added to the database as a result? What is the substitution dictionary that makes insertion of this new fact possible? Be sure that the variable names in your new fact are normalized so that they will not be confused with variables elsewhere in the database.

Question 40 (0 points)

Two propositions, P and Q, can be unified to create the proposition $U=$ Flies(mary, hotairballoons). The substitution dictionary creating this unification is $S=\{u:$ mary,v : hotairballoons $\}$. Is this information sufficient to specify the two propositions P and Q ? Prove your answer.

Question 41 (0 points)
u, v, w, x, y, and z are variables. You are trying to determine whether or not it's possible to perform a step of forward-chaining using the rule $T=\operatorname{Uses}(u$, cellphone $) \Rightarrow \operatorname{Human}(u)$. The facts currently available to you in the database \mathscr{D} are:

$$
\mathscr{D}=\left\{\begin{array}{c}
P=\text { Eats }(\text { tiger }, \text { cellphone }) \\
Q=\forall v: \text { Uses }(v, \text { landline }) \\
R=\forall w: \text { Uses }(\text { george }, w) \\
S=\exists x: \text { Zambonis }(x, \text { icerink })
\end{array}\right\}
$$

Which proposition (P, Q, R, or S) can be unified with the antecedent of T ? What is the resulting unified proposition, what is the resulting substitution dictionary, and what new fact is added to the database?

7 Vector Semantics

Question 42 (0 points)

The continuous bag of words (CBOW) model represents each word, w_{t}, using a vector, \mathbf{v}_{t}. The vectors are trained to minimize

$$
\mathscr{L}=-\frac{1}{T} \sum_{t} \sum_{j} \ln P\left(w_{t} \mid w_{t+j}\right),
$$

where the probability is estimated as

$$
P\left(w_{t} \mid w_{t+j}\right)=\frac{\exp \left(\mathbf{v}_{t}^{T} \mathbf{v}_{t+j}\right)}{\sum_{\mathbf{v} \in \mathscr{V}} \exp \left(\mathbf{v}^{T} \mathbf{v}_{t+j}\right)}
$$

It was proven in class that $\nabla_{\mathbf{v}_{t}} \ln P\left(w_{t} \mid w_{t+j}\right)=\mathbf{v}_{t+j}\left(1-P\left(w_{t} \mid w_{t+j}\right)\right)$. In class, however, we did not discuss the fact that $P\left(w_{t} \mid w_{t+j}\right)$ depends on every vector in \mathscr{V}, not just on \mathbf{v}_{t} and \mathbf{v}_{t+j}. Find the value of $\nabla_{\mathbf{v}} \ln P\left(w_{t} \mid w_{t+j}\right)$ for some vector \mathbf{v} that is neither \mathbf{v}_{t} nor \mathbf{v}_{t+j}.

Question 43 (0 points)

Suppose the the input to a transformer is the sequence of scalar values $v_{t}=\cos \left(\frac{t}{1000}\right)$, where $0 \leq t \leq$ 999. You are trying to find the context, c_{i}, for a query \mathbf{q}_{i} whose inner product with the keys is

$$
\mathbf{q}_{i}^{T} \mathbf{k}_{t}= \begin{cases}0 & t \in\{250,251,252\} \\ -\infty & \text { otherwise }\end{cases}
$$

Find the numerical value of c_{i}.

Question 44 (0 points)

Suppose the the input to a transformer is the sequence of scalar values $v_{t}=\left(\frac{t}{1000}\right)$, where $0 \leq t \leq 999$. You are trying to find the context, c_{i}, for a query, \mathbf{q}_{i}, whose inner product with the keys is

$$
\mathbf{q}_{i}^{T} \mathbf{k}_{t}= \begin{cases}0 & t \in\{500,501,502\} \\ -\infty & \text { otherwise }\end{cases}
$$

Find the numerical value of c_{i}.

Question 45 (0 points)

The position encoding for a transformer is a set of cosine-sine pairs, of the form

$$
\mathbf{x}_{t}=\left[\begin{array}{c}
\cos (\omega t) \\
\sin (\omega t)
\end{array}\right]
$$

where ω is some constant. Consider a very simple transformer whose inputs contain only the twodimensional position encoding shown above, for some constant value of ω. Suppose, further, that the key and value vectors are equal to the input $\left(\mathbf{k}_{t}=\mathbf{v}_{t}=\mathbf{x}_{t}\right)$, and that only the query vector is transformed:

$$
\mathbf{q}_{t}=\mathbf{W} \mathbf{x}_{t}
$$

Remember that the context vector is computed as

$$
\mathbf{c}_{t}=\sum_{s} \alpha(t, s) \mathbf{v}_{s}, \quad \alpha(t, s)=\frac{\exp \left(\mathbf{q}_{t}^{T} \mathbf{k}_{s}\right)}{\sum_{s^{\prime}} \exp \left(\mathbf{q}_{t}^{T} \mathbf{k}_{s^{\prime}}\right)}
$$

Find a value of the matrix \mathbf{W} that will result in an attention that always looks back three time steps, i.e., $\alpha(t, t-3)>\alpha(t, s)$ for any $s \neq t-3$. Hint: you may find it useful to know that

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\sin (\alpha-\beta) & =\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned}
$$

8 Robotics

Question 46 (0 points)
A robot crane is trying to build a building. Suppose that the state variable is $s=\left\{r_{1}(s), \ldots, r_{n}(s)\right\}$, where $r_{i}(s)=\left(x_{i}(s), y_{i}(s), z_{i}(s)\right)$ are the lattitudinal, longitudinal, and vertical positions of the $i^{i \text { h }}$ brick during the $s^{\text {th }}$ state of partial construction. The goal of the search is to find a way to put the n available bricks into n desired positions. Order doesn't matter: it doesn't matter which particular brick ends up in each of the n desired target positions. Suppose that the cost of moving the $i^{\text {th }}$ brick into the $j^{\text {th }}$ target position, $r_{j}(g)=\left(x_{j}(g), y_{j}(g), z_{j}(g)\right)$, is

$$
\left\|r_{i}(s)-r_{j}(g)\right\|=\sqrt{\left(x_{i}(s)-x_{j}(g)\right)^{2}+\left(y_{i}(s)-y_{j}(g)\right)^{2}+\left(z_{i}(s)-z_{j}(g)\right)^{2}}
$$

Prove that the following heuristic is admissible for this problem:

$$
h(s)=\sum_{i=1}^{n} \min _{j=1}^{n}\left\|r_{i}(s)-r_{j}(g)\right\|
$$

Question 47 (0 points)

Suppose a robot arm has a shoulder angle of θ radians, an upper arm of length L_{1}, an elbow angle of ϕ radians, and a lower arm of length L_{2}. Define a position b on the robot arm to be the point b meters from the shoulder, thus the forward kinematics are given by:

$$
\phi_{b}\left(\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
y
\end{array}\right]= \begin{cases}{\left[\begin{array}{l}
b \cos \theta \\
b \sin \theta
\end{array}\right]} & 0 \leq b \leq L_{1} \\
{\left[\begin{array}{c}
L_{1} \cos \theta+b \cos (\theta+\phi) \\
L_{1} \sin \theta+b \sin (\theta+\phi)
\end{array}\right]} & L_{1} \leq b \leq L_{1}+L_{2}\end{cases}
$$

In the workspace \mathscr{W}, there is an obstacle: a wall at $y=c$, which makes it impossible for any part of the robot to exist at any point $y \geq c$, where you may assume that $c>0$. This can be written as:

$$
\mathscr{W}_{\text {obs }}=\{(x, y): y \geq c\}
$$

Define $\mathscr{C}_{\text {obs }}$ to be the set of robot configurations $[\theta, \phi]$ that place any part of the robot arm within $\mathscr{W}_{\text {obs }}$. This can be written as

$$
\mathscr{C}_{\text {obs }}=\{(\theta, \phi): P\},
$$

where P is some inequality or disjunction of inequalities in terms of θ and ϕ. Find P.

Question 48 (0 points)

A robot fire truck works in a workspace with a horizontal dimension (x) and a vertical dimension (y). The robot fire truck's base must remain at $y=0$, but it can move its base back and forth to position $x=p$. The ladder can be raised to elevation angle $\theta(0 \leq \theta \leq \pi)$, and the ladder can be extended to length l. A point b meters along the ladder $(0 \leq b \leq l)$ is thus located by the forward-kinematic function as

$$
\phi_{b}\left(\left[\begin{array}{l}
p \\
\theta \\
l
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
p+b \cos \theta \\
b \sin \theta
\end{array}\right]
$$

In the workspace \mathscr{W}, there is an obstacle: a wall at $x=c$, which makes it impossible for any part of the robot to exist at any point $x \geq c$, where you may assume that $c>0$. This can be written as:

$$
\mathscr{W}_{\text {obs }}=\{(x, y): x \geq c\}
$$

Define $\mathscr{C}_{\text {obs }}$ to be the set of robot configurations $[p, \theta, l]$ that place any part of the robot's ladder within $\mathscr{W}_{\text {obs. }}$. This can be written as

$$
\mathscr{C}_{\text {obs }}=\{(p, \theta, l): P\},
$$

where P is some inequality or disjunction of inequalities in terms of p, θ and l. Find P.

Question 49 (0 points)

A robot fire truck is able to manipulate its own horizontal location (D), the angle of its ladder (θ), and the length of its ladder (L). The ladder has a length of L, and an angle (relative to the x axis) of θ ($0 \leq \theta \leq \frac{\pi}{2}$ radians), so that the position of the tip of the ladder is

$$
(x, z)=(D+L \cos \theta, L \sin \theta)
$$

(a) What is the dimension of the configuration space of this robot?
(b) The robot must operate between two buildings, positioned at $x=0$ and at $x=10$ meters. No part of the robot (neither its base, nor the tip of the ladder) may ever come closer than 1 meter to either building. What portion of configuration space is permitted? Express your answer as a set of inequalities involving only the variables D, L, and θ; the variables x and z should not appear in your answer.
(c) The robot's objective is to save a cat from a tree. The cat is at position $(x, z)=(5,5)$. The robot begins at position ($D=5, L=3, \theta=0$). The final position of the robot depends on how much it costs to raise the ladder by one radian, as compared to the relative cost of extending the ladder by one meter, and the relative cost of moving the truck by one meter. Why?

Question 50 (0 points)
A TBR (two-body robot) is a robot with two bodies. Each of the two bodies can move independently; they're connected by a wi-fi link, but there is no physical link. The position of the first body is $\left(x_{1}, y_{1}\right)$, the position of the second body is $\left(x_{2}, y_{2}\right)$.
The robots have been instructed to pick up an iron bar. The bar is 10 meters long. Until the robots pick it up, the iron bar is resting on a pair of tripods, 10 meters apart, at the locations $(1,0)$ and $(11,0)$.
(a) Define a notation for the configuration space of a TBR. What is the dimension of the configuration space?
(b) In order to lift the iron bar, the robot must reach an OBJECTIVE where one of its bodies is at position $(1,0)$ and the other is at position $(11,0)$. In terms of your notation from part (a), specify the OBJECTIVE as a set of points in configuration space. You may specify the OBJECTIVE as a set of discrete points, or as a set of equalities and inequalities.
(c) If the TBR touches the bar (with either of its bodies) at any location other than the endpoints ((1,0) and $(11,0)$), then the bar falls off its tripods. This constitutes a FAILURE. Characterize FAILURE as a set of points in configuration space. You may specify FAILURE as a set of discrete points, or as a set of equalities and inequalities.

