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Short  Term  Spectral  Analysis, 
Modification by Discrete  Fourier  Transform 

Synthesis, and 

JONT B. ALLEN 

Abstract-A theory of short term spectral analysis, synthesis, and 
modification is presented with an attempt  at  pointing out certain 
practical and theoretical  questions. The methods discussed here are 
useful in designing filter banks when  the filter bank outputs are to be 
used for synthesis after multiplicative  modifications are  made to the 
spectrum. 

I N THIS paper,  some practical and theoretical questions are 
considered  concerning the analysis of  and  synthesis  from  a 

signal's short  term  spectrum.  The  short  term  spectrum, or 
time  spectrum, are those signals which result from  analyzing 
a single input signal with  a set of filters which are  selective 
over a range of  frequencies [ l ]  -[3]. In  the case of analysis by 
a  spectrum  analyzer, the filters are either spaced contiguously 
or  one filter is heterodyned over the  frequency range  of in- 
terest. For  many applications, this is quite  adequate. How- 
ever, when one is interested in both analysis and synthesis, a 
more  rigorous  approach is in order. 

In this paper, we shall restrict ourselves to the case of  uni- 
formly  spaced,  symmetric  bandpass filters. We are  also not 
concerned  with  bandwidth  reduction. In general, the  channel 
capacity in the  short  term spectral domain will be greater than 
that  of  the original signal. We will  be interested,  however, in 
being  able to  modify  the  short  term  spectrum in either  its 
phase or  amplitude content  without  introducing  undesired dis- 
tortion in the  synthesized signal. 

Previous filter bank  analysis-synthesis  techniques have been 
given by Flanagan and  Golden [ l ]  , Schafer  and  Rabiner [2], 
and  Portnoff [3].  Our approach differs in  several important 
ways. Previous approaches have  used contiguous filter banks 
in the analysis process. We shall show that  this results in an 
undersampled  spectrum and, as a result, synthesis  becomes 
very  sensitive to phase or delay modifications. We will then 
show that by using a  properly  sampled  overlapping filter set, 
we may avoid this sensitivity. By recognizing  the  need for a 
greater number  of filters, both  the analysis and synthesis pro- 
cedures are simplified. However, the number of  samples of 
data in the  short  term spectral domain that results per sample 
of input  data is greater than  one;  thus,  the relevance  of the 
present  method to bandwidth  reduction  remains unclear. 

A second  important  difference  between  our  approach  and 
that of others is during synthesis. All previous  authors [ l ]  - 
[3] have summed  the filter outputs  for  the synthesis; we 
synthesize in a way that is  similar to the  overlap  add  method 
[4] . As a result, our  method  does not require an interpolating 
filter prior to  the  add, and @us, there is a savings in the 
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amount of additional filtering. In  our  method,  only  a small 
number of adds  (four fo'r a Hamming window) per sample are 
required. 

The major  advantage  of  the  present  scheme is that  it allows 
arbitrary modifications of the  short  term  spectrum. These 
modifications  may be directly interpreted in the  time  domain 
as a.filter whose impulse response  is  given by  the  Fourier trans- 
form  of  the  modification.  The price paid for  allowing  modifi- 
cations  of  the  spectrum w i t b e  seen to be  an increase in  the 
number  of  frequency  channels  required.  A  modification  made 
prior to the  usual  method  of synthesis, namely, of adding  the 
filter outputs of a contiguous filter set,  does not satisfy the 
convolution rule. 

ANALYSIS OF SHORT TERM SPECTRA 
We have defined  the  short  term  spectra as  an output derived 

from  a  bank  of filters. At  each filter frequency, we require 
two filters which have the same magnitude  response but differ 
in  phase by 90". 

It is well known [2] , [3] that  a  filter bank  of  this  form  may 
be  realized by weighting the  input signal x(t)  by  a sliding 
low-pass filter impulse  response w ( t )  and  Fourier  transforming 
the result. Thus, we  have 

m 

X(f, t )  =/ w (t - 7) x (7) e i 2 n f ~  d7 (1) 

where X(f, t )  is the  short  term  frequency  spectrum, t is the 
time variable, w(t  - 7) is the shifted window, X ( T )  is the  input 
signal, and exp  (j27r.f~) is the complex  exponential. 

We define W(f) as the  Fourier  transform  of w(t ) :  

-m 

W ( f )  =Jm w(7) ej2nfT d7. (2) 

W(f) is assumed to be small for  frequencies above some  crit- 
ical frequency.  The  short  term  spectrum X(f, t )  is equivalent 
to frequency shifting the frequency  band  of x(t) centered at 
f down  to  zero  frequency  with  the  complex  exponential 
exp (j277ft) and  low-pass filtering the result with  the low-pass 
filter w(t).  The resulting X(f, t )  is a  complex  function  of  time 
(see Fig. 1 and [ l ]  -[3]). In the applications  considered  here, 
x ( t )  is to  be  a sampled  data signal x ( k )  and X(', t)  will  be 
found  by  replacing the Fourier  transform  by  a discrete Fourier 
transform  (DFT). 

An important question is relevant at  this  point,  namely,  how 
many  frequency  and  time  samples are required to fully repre- 
sent the  data X(f, t )  in a sampled  data  system.  This  question 
is  answered by  applying  the  Nyquist  theorem  twice. w ( t )  has 
two characteristic "lengths," one in the time  domain  and  one 

- m  
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Fig. 1. Analog  equivalent of the  windowed  Fourier  transform  method 
of  simulating  a  filter bank. 

in the frequency  domain. These lengths are bounded by  the 
so-called “uncertainty principle” [5]. We define the length in 
time to be that time period T over which w(t )  is significant. 
The frequency length is that frequency range F over which 
W( f )  is significant. For the case  of the Hamming window, 

0.54 i- 0.46 COS (2ntjTo), -To12 < t < To12 
w( t )  = t 0 ,  I t l> To12 

(3) 

reasonable definitions of T and Fare  

T =  To 

F = 4/To. (4) 

In Fig. 2 we  see the meaning of these definitions graphically. 
w(t) is exactly time limited; thus  the definition of T is based 
on the window’s nonzero  length. W (  f ), on the  other  hand, 
is only  approximately  bandlimited. Using a 42 dB criteria, 
W( f )  is effectively frequency limited with  a maximum fre- 
quency of 2/To.  Note that our  definition of the characteristic 
frequency length includes negative as well  as positive fre- 
quencies since the spectrum is symmetric about f = 0. 

F and T may be used to define sampling rates  in  the time 
and frequency domains, respectively. For a fixed f ,  X( f ,  t )  is 
a low-pass signal. Thus, from the Nyquist theorem, X may be 
sampled in time at a rate greater than  or equal to twice its 
highest frequency. An equivalent statement of the Nyquist 
theorem is that the density of time samples must be greater 
than the characteristic frequency length. We define this sam- 
ple period as D. 

D = 1/F. ( 5 )  

The time samples of interest are then given by 

t ,  = nD. (64 

Equation ( 5 )  says that the interval between time samples 
equals the reciprocal of the characteristic frequency  length. 
F will  be  called the frame rate.  For  a Hamming window, D 
is equal to one  quarter of the window’s length. 

By a completely analogous argument, the continuous  fre- 
quency spectra may be replaced by a discrete set of frequen- 
cies. This is  again the Nyquist theorem; however, now it is 
applied to the time domain. In this case, the sample density 
is in  frequency and the characteristic length is  in time.  Thus, 
we may sample in the  frequency domain with  a spacing of 
1/T. The frequencies of interest are 

f ,  = m/T. (6b) 

Equation (6b) says that  the interval between frequency sam- 
ples  is the reciprocal of the characteristic time length T.  

(FREQUENCY)x (WINDOW LENGTH) 

f To 

Fig. 2. Basic definitions of the  characteristic  time  and  frequency 
lengths T ,  F for  the case  of a Hamming  window. 

Properly sampled in both the time and frequency domains, 
the short term spectra may be found by a discrete Fourier 
transform (DFT) when the  input is a sequence x@). In the 
discrete case, T is normalized by  the sequence sampling pe- 
riod which we  call T,. T, is chosen so that T is an integral 
power of 2. 

In the following, we denote the time index n and the fre- 
quency  index m as subscripts. There is no significant informa- 
tion lost if we  replace the short term spectrum X( f ,  t )  with its 
sampled  version X,, by sampling it  at the two Nyquist pe- 
riods l jF and l IT. 

Xnm = X(m/T,  nlF),  n and m integers. (7) 

Using this notation, we may specify the formula for the Ny- 
quist sampled short  term  spectrum as 

X,, = w(nD - k )  x(k) eiznkm’T. 
T-  1 

(8) 
k=O 

Equation (8) is the sampled version  of (1). Note that three 
different sample periods have been defined: T,, the sample 
period for  the input sequence x@); D,  the frame period for 
the bandlimited signals at each frequency f ;  and 1/T, the 
frequency sampling period or filter spacing. 

If  we define F and F-’ as the DFT and its inverse, 

X,, = F{w(nD - k)x(k)}. (9) 

In (9), k and m are the transform variables and n is a parame- 
ter. Note that by applying an  inverse Fourier transform to (9), 
we may find a relationship which will be useful later: 
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x ( k )  w(nD - k )  = F-l  { x n m }  (10) 

where 

1 T-1 
F-’ {xnrn } 6 7 X,, e-j2nkmlT. (1 1) 

m=o 

When X,, is interpreted as the  output of a  bank  of filters, 
each n corresponds to a  time sample at  the  lower sampling 
rate resulting from  the  bandlimiting  nature  (“frequency 
length”) of each  filter. Each m corresponds to a  different fil- 
ter frequency  of  the filter set. The frequency  domain  may be 
sampled because  of  the  finite  time  length of the  window. 

Next we look  at  the increase in the  data sample density 
defined as the  number of samples of  short  term  spectra  gen- 
erated for each input sample  of x @ ) .  For  a real  signal x @ ) ,  
assume that we take  a segment T  long  and  compute  the  num- 
ber of samples of  short  term  spectra  required  during  that 
period. A DFT is required every D samples and  each  DFT  has 
T unique  frequency values (T/2 complex values). Thus, we  get 

T(samp1es  per frame) X - (frames per T interval) ( 1  2) 

samples for every T time  samples. The number of  samples  gen- 
erated  for  each input sample  is then given by dividing (12) 
by T: 

T 
D 

m 

- = TF. 
D 
I 

For  the case of  a Hamming window, this factor  becomes 4. 

SYNTHESIS WITHOUT MODIFICATION 
The synthesis procedure is  based on the  following  identity 

proved in the  Appendix  for  any  bandlimited  window w(k):  

w(nD- k ) =  1 
m 

-m 
n= 

where we have  assumed with  no loss of generality that 

W(0) = D. (1  5) 

Relation (14) is exactly  true if the  window is truly  bandlim- 
ited to F/2. Note  that (14) is independent  of k. 

If  we multiply (14) by x ( k )  and use the inverse DFT rela- 
tion (lo), we obtain  the  synthesis rule 

x ( k )  = F-’ {Xnm 1 
OE 

(1 6) 
-ea 

n =  
where 

1 T-1  
~ - 1  { x n m }  = x e-i2rkmlT 

m=o  
nm (17) 

Equation (16) states  that x ( k )  is a  sum over  inverse  DFT’s. It 
is  similar to  the overlap  add rule, as  discussed by Stockham 
[4] , which  may  be used to  do  continuous convolution using 
FFT’s; it differs in that  the sections are taken as overlapping 
and are not rectangular  windows. 

n + t th FRAME OUTPUT 4 D ‘v 

t 

OUTPUT DATA  ARRAY 

OUTPUT  OVERLAP ADD 
SAMPLES  SAMPLES 

Fig. 3 .  The  synthesis is performed in three steps.  First, D samples are 
output  from  the left end of the  output  buffer.  Then  the  output  buf- 
fer is shifted D samples to the left  to the  position  shown.  Finally,  the 
samples x n ( t )  are added to those  in  the  output  buffer.  The  steps are 
then  repeated  for  the  next  frame. 

In practice,  during analysis the signal x ( k )  is shifted by D 
and  the  window  remains  fixed.  For synthesis, we define  the 
signals x, ( k )  

x,@)  = F-I { X n m } .  

During synthesis, the  output  buffer x ( k )  is shifted by D and 
the new samples x , @ )  are added to x @ ) .  (This  might be 
viewed  as a block recursive calculation.) This process is then 
repeated  for  the  next  time  frame,  each  frame  being  defined as 
a shift of  the  window  by D samples (Fig. 3). 

SYNTHESIS WITH SPECTRUM MODIFICATIONS 
The analysis-synthesis  system  described  above  may  be  gen- 

eralized to allow for modifications  of  the  short  term  spectrum. 
To  do  this, we must  recognize that spectral modifications are 
equivalent to filtering. Since the time characteristic length is 
always  increased  by filtering, the  number  of  frequency  points 
must be increased as indicated  by  (6b).  This is done  by  ap- 
pending  zeros to  the window w(k)  prior to  the analysis DFT. 
The  number of points in the  DFT is  also increased to include 
the  appended zeros. This  is  similar to appending  zeros to the 
window in the overlap add  procedure  after  sectioning [4]. 
The number  of  appended zeros, and  thus  the  DFT  length, 
must  be great enough to accommodate  the  modification  which 
is to be  made. When the  modification  has  been  properly ac- 
counted  for,  time aliasing  will not occur  during synthesis. In 
practice,  some  time aliasing does  occur,  but  by  proper  choice 
of  the initial DFT  length,  the error may  be  made negligible. 

The  effect of a  fixed spectral modification P,,, may  be un- 
derstood  by  factoring  it  out as follows: 

= P(k) * x ( k )  (20) 

~ ( k )  = F-l {pm 1 (21) 

where 

and “*” denotes  convolution.  Thus,  a  fixed  modification 
to the  short  term  spectrum is equivalent to convolution 
with p (k )  . 

Fixed  modifications  may not be  made in the  schemes  pre- 
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sented by other  authors [2],   [3].  For  example, the synthesis 
techniques of both authors are particularly sensitive to a 180’ 
phase modification  in one channel. Such a  modification will 
produce zeros in the transition regions between bands,  and will 
therefore not result in  the desired all-pass modification. 

The next obvious step is to allow the modification to be- 
come a function of time, giving  rise to the final synthesis rule: 

m 

~ ( k )  = F-’ {Prim x n m  1. (22) 
- m  
n= 

The effect of a time-varying spectral modification is beyond 
the scope of the  present  paper. 

Finally, we would like to point out some further differences 
between the present and previous [2],  [3] results. It is true, 
in general, that  the short term spectra  may be subsampled in 
either  frequency or time and x ( k )  can still be determined from 
X,, . When this  happens, however, the synthesis is no longer 
robust to modifications. That  this is true may be  seen from 
two examples. 

Suppose we generate the time subsampled, short  term spec- 
tra using a Hamming window which has been shifted by its 
full period 

x,, =F{w(nTo - k ) x ( k ) }  

where w(k)  is the Hamming window with length T o .  x ( k )  
may then be recovered by first using (16) and then correcting 
for the window function. However, when a  modification P 
has  occurred, such as a pure delay, the window correction will 
no longer be correct, 

The second example is the case of Portnoff [3] . Our anal- 
ysis procedure is equivalent to his if we remove all filters that 
overlap, leaving a  contiguous subsampled set.  Portnoff has dis- 

to properly represent the short  term  spectra. The analysis is 
performed in frames by a sliding low-pass filter window and a 
DFT, a frame being defined by  the Nyquist period of the 
bandlimited window. The synthesis is reminiscent of the over- 
lap add process as discussed by Stockham [4],  and consists of 
an  inverse DFT and a vector add each frame. Spectral modi- 
fications may  be included if zeros are appended to the window 
function prior to  the analysis, the number of zeros being equal 
to the time characteristic length of the  modification. 

Advantages of the new technique are that modifications may 
be included and no interpolation is necessary during synthesis. 
A possible disadvantage is the increased amount of bandwidth 
required to transmit the short  term  spectrum as compared to 
that required to transmit the original signal. 

APPENDIX 
We wish to show that given any.  function w(k)  which is 

bandlimited to a  frequency of 1/(2D) and normalized as  given 
by (15),  then  (14) is true, namely, that the sum of any set of 
samples of w ( k )  taken  with  a period D is one. 

This is easily proved using the Poisson summation formula 
[5, eq. (3-56), p. 471. If W(f) is the Fourier  transform of 
w(k) ,  then 

w (no  - k )  = - 2 e-i2amklD W(m/D). 
m 1 ”  

( A l l  
- m  D - m  

n =  m= 

Since W is bandlimited, only the m = 0 term is nonzero. 
Thus, (14) follows from  (15). 
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cussed  in detail a  method of synthesis from this undersampled 
data set. He requires a  restriction  on  the window function for 
his synthesis to  work. The extra restriction is that  the fre- [11 
quency response of the  filters  add to  one. This requirement is 
particularly sensitive to phase modifications.  Portnoff himself L21 
points out  the problem of this  condition not being properly , 

met: ‘‘. . . the resulting distortion will  be perceived as rever- 
beration in the output signal” [3] . [31 

SUMMARY 
A  theory of short term spectral analysis-synthesis with 

modifications has been discussed with particular attention be- 
ing  given to  the number of time and frequency  points required 

[41 
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