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Ramsey Faragher
[lecture NOTES]

Understanding the Basis of the Kalman Filter 
Via a Simple and Intuitive Derivation 

T
his article provides a simple 
and intuitive derivation of 
the Kalman filter, with the 
aim of teaching this useful 
tool to students from disci-

plines that do not require a strong 
mathematical background. The most 
complicated level of mathematics 
required to understand this derivation is 
the ability to multiply two Gaussian 
functions together and reduce the result 
to a compact form. 

The Kalman filter is over 50 years old 
but is still one of the most important 
and common data fusion algorithms in 
use today. Named after Rudolf E. 
Kálmán, the great success of the 
Kalman filter is due to its small compu-
tational requirement, elegant recursive 
properties, and its status as the optimal 
estimator for one-dimensional linear 
systems with Gaussian error statistics 
[1] . Typical uses of the Kalman filter 
include smoothing noisy data and pro-
viding estimates of parameters of inter-
est.  Applications include global 
positioning system receivers, phase-
locked loops in radio equipment, 
smoothing the output from laptop 
trackpads, and many more.

From a theoretical standpoint, the 
Kalman filter is an algorithm permitting 
exact inference in a linear dynamical 
system, which is a Bayesian model simi-
lar to a hidden Markov model but where 
the state space of the latent variables is 
continuous and where all latent and 
observed variables have a Gaussian dis-
tribution (often a multivariate Gaussian 
distribution). The aim of this lecture 
note is to permit people who find this 
description confusing or terrifying to 

understand the basis of the Kalman fil-
ter via a simple and intuitive derivation. 

RELEVANCE
The Kalman filter [2] (and its variants 
such as the extended Kalman filter [3] 
and unscented Kalman filter [4]) is 
one of the most celebrated and popu-
lar data fusion algorithms in the field 
of information processing. The most 
famous early use of the Kalman filter 
was in the Apollo navigation computer 
that took Neil Armstrong to the moon, 
and (most importantly) brought him 
back. Today, Kalman filters are at work 
in every satellite navigation device, 
every smart phone, and many com-
puter games.

The Kalman filter is typically derived 
using vector algebra as a minimum 
mean squared estimator [5],  an 
approach suitable for students confident 
in mathematics but not one that is easy 
to grasp for students in disciplines that 
do not require strong mathematics. The 
Kalman filter is derived here from first 
principles considering a simple physical 
example exploiting a key property of the 
Gaussian distribution—specifically the 
property that the product of two 
Gaussian distributions is another 
Gaussian distribution. 

PREREQUISITES
This article is not designed to be a thor-
ough tutorial for a brand-new student to 

the Kalman filter, in the interests of 
being concise, but instead aims to pro-
vide tutors with a simple method of 
teaching the concepts of the Kalman fil-
ter to students who are not strong 
mathematicians. The reader is expected 
to be familiar with vector notation and 
terminology associated with Kalman fil-
tering such as the state vector and cova-
riance matrix. This article is aimed at 
those who need to teach the Kalman fil-
ter to others in a simple and intuitive 
manner, or for those who already have 
some experience with the Kalman filter 
but may not fully understand its founda-
tions. This article is not intended to be a 
thorough and standalone education tool 
for the complete novice, as that would 
require a chapter, rather than a few 
pages, to convey. 

PROBLEM STATEMENT
The Kalman filter model assumes that 
the state of a system at a time t evolved 
from the prior state at time t-1 accord-
ing to the equation

 x F x B u wt t t t t t1= + +- , (1  )

where 
 ■ xt is the state vector containing 

the terms of interest for the system 
(e.g., position, velocity, heading) at 
time t

 ■ ut is the vector containing any 
control inputs (steering angle, throt-
tle setting, braking force)

 ■ Ft is the state transition matrix 
which applies the effect of each sys-
tem state parameter at time t-1 on 
the system state at time t (e.g., the 
position and velocity at time t-1 
both affect the position at time t)

 ■ Bt is the control input matrix 
which applies the effect of each 

 Digital Object Identifier 10.1109/MSP.2012.2203621
 Date of publication: 20 August 2012

THE KALMAN FILTER IS 
OVER 50 YEARS OLD BUT 

IS STILL ONE OF THE MOST 
IMPORTANT AND COMMON 
DATA FUSION ALGORITHMS 

IN USE TODAY.



IEEE SIGNAL PROCESSING MAGAZINE   [129]   SEPTEMBER 2012

 control input parameter in the 
 vector ut on the state vector (e.g., 
applies the effect of the throttle set-
ting on the system velocity and 
position)

 ■ wt is the vector containing the 
process noise terms for each parame-
ter in the state vector. The process 
noise is assumed to be drawn from a 
zero mean multivariate normal 
 distribution with covariance given by 
the covariance matrix Qt.

Measurements of the system can also 
be performed, according to the model

  H x vzt t t t= + , (2)

where 
 ■ zt is the vector of measurements
 ■ Ht is the transformation matrix 

that maps the state vector parame-
ters into the measurement domain

 ■ vt is the vector containing the 
measurement noise terms for each 
observation in the measurement vec-
tor. Like the process noise, the mea-
surement noise is assumed to be zero 
mean Gaussian white noise with 
covariance Rt.

In the derivation that follows, we will 
consider a simple one-dimensional track-
ing problem, particularly that of a train 
moving along a railway line (see 
Figure  1). We can therefore consider 
some example vectors and matrices in 
this problem. The state vector xt contains 
the position and velocity of the train

  x
x
xt

t

t
=

o
; E.

The train driver may apply a braking or 
accelerating input to the system, which 

we will consider here as a function of an 
applied force ft and the mass of the train 
m. Such control information is stored 
within the control vector ut

 u
m
f

t
t= .

The relationship between the force 
applied via the brake or throttle during 
the time period ∆t (the time elapsed 
between time epochs t-1 and t) and the 
position and velocity of the train is given 
by the following equations:
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These linear equations can be written in 
matrix form as
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And so by comparison with (1), we can 
see for this example that
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The true state of the system xt cannot be 
directly observed, and the Kalman filter 
provides an algorithm to determine an 
estimate xtt  by combining models of the 
system and noisy measurements of cer-
tain parameters or linear functions of 
parameters. The estimates of the param-
eters of interest in the state vector are 
therefore now provided by probability 
density functions (pdfs), rather than dis-
crete values. The Kalman filter is based 
on Gaussian pdfs, as will become clear 

following the derivation outlined below 
in the “Solutions” section. To fully 
describe the Gaussian functions, we 
need to know their variances and covari-
ances, and these are stored in the covari-
ance matrix Pt. The terms along the 
main diagonal of Pt are the variances 
associated with the corresponding terms 
in the state vector. The off-diagonal 
terms of Pt provide the covariances 
between terms in the state vector. In the 
case of a well-modeled, one-dimensional 
linear system with measurement errors 
drawn from a zero-mean Gaussian distri-
bution, the Kalman filter has been 
shown to be the optimal estimator [1]. 
In the remainder of this article, we will 
derive the Kalman filter equations that 
allow us to recursively calculate xtt  by 
combining prior knowledge, predictions 
from systems models, and noisy mea-
surements.

The Kalman filter algorithm involves 
two stages: prediction and measure-
ment update. The standard Kalman fil-
ter equations for the prediction stage are

 x F x B ut t t t t t t1 1 1= +; ;- - -t t  (3)

 P F P F Qt t t t t t t1 1 1
T= +; ;- - - , (4)

where Qt is the process noise covariance 
matrix associated with noisy control 
inputs. Equation (3) was derived explic-
itly in the discussion above. We can 
derive (4) as follows. The variance asso-
ciated with the prediction xt t 1; -t  of an 
unknown true value xt  is given by

 [( ) ( ) ]P x x x xE ,t t t t t t t t
T

1 1 1= - -; ; ;- - -t t

and taking the difference between (3) 
and (1) gives

Prediction (Estimate)

Measurement (Noisy)

0 r

[FIG1] This figure shows the one-dim ensional system under consideration.
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 ( )x x F x x wt t t t t t t1 1 1- = - +; ;- - -t t  
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Noting that the state estimation errors 
and process noise are uncorrelated
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The measurement update equations are 
given by

 x H x )(x K zt t tt t t t t t1 1= + -; ; ;- -t t t  (5)

 P P K H Pt t t t t t1 t t 1= -; ; - ; - , (6)

where

  K P H H P H R( ) .T T
t t t t t t t t t1 1

1= +; ;- -
-  (7)

In the remainder of this article, we will 
derive the measurement update equa-
tions [(5)–(7)] from first principles. 

SOLUTIONS
The Kalman filter will be derived here 
by considering a simple one-dimension-
al tracking problem, specifically that of 
a train is moving along a railway line. At 
every measurement epoch we wish to 

know the best possible estimate of the 
location of the train (or more precisely, 
the location of the radio antenna mount-
ed on the train roof). Information is avail-
able from two sources: 1) predictions 
based on the last known position and 
velocity of the train and 2) measurements 

from a radio ranging system deployed at 
the track side. The information from the 
predictions and measurements are com-
bined to provide the best possible estimate 
of the location of the train. The system is 
shown graphically in Figure 1. 

The initial state of the system (at 
time t = 0 s) is known to a reasonable 
accuracy, as shown in Figure 2. The 
location of the train is given by a 
Gaussian pdf. At the next time epoch 
( )t 1 s= , we can estimate the new posi-
tion of the train, based on known limita-
tions such as its position and velocity at 
t = 0, its maximum possible acceleration 
and deceleration, etc. In practice, we may 
have some knowledge of the control 
inputs on the brake or accelerator by the 
driver. In any case, we have a prediction of 
the new position of the train, represented 
in Figure 3 by a new Gaussian pdf with a 
new mean and variance. Mathematically 
this step is represented by (1). The vari-
ance has increased [see (2)], representing 
our reduced certainty in the accuracy of 
our position estimate compared to t = 0, 
due to the uncertainty associated with any 
process noise from accelerations or decel-
erations undertaken from time t = 0 to 
time t = 1.

[FIG2] The initial  knowledge of the system at time t = 0. The red Gaussian distribution represents the pdf providing the initial 
confidence in the estimate of the position of the train. The arrow pointing to the right represents the known initial velocity of 
the train. 

??????
Prediction (Estimate)

[FIG3] Here, the predict ion of the location of the train at time t = 1 and the level of uncertainty in that prediction is shown. The 
confidence in the knowledge of the position of the train has decreased, as we are not certain if the train has undergone any 
accelerations or decelerations in the intervening period from t = 0 to t = 1.

THE BEST ESTIMATE 
WE CAN MAKE OF THE 

LOCATION OF THE TRAIN IS 
PROVIDED BY COMBINING 
OUR KNOWLEDGE FROM 

THE PREDICTION AND THE 
MEASUREMENT.
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At t = 1, we also make a measure-
ment of the location of the train using 
the radio positioning system, and this is 
represented by the blue Gaussian pdf in 
Figure 4. The best estimate we can make 
of the location of the train is provided by 
combining our knowledge from the pre-
diction and the measurement. This is 
achieved by multiplying the two corre-
sponding pdfs together. This is repre-
sented by the green pdf in Figure 5.

A key property of the Gaussian function 
is exploited at this point: the product of two 
Gaussian functions is another Gaussian 
function. This is critical as it permits an 
endless number of Gaussian pdfs to be 
multiplied over time, but the resulting 
function does not increase in complexity or 
number of terms; after each time epoch the 
new pdf is fully  represented by a Gaussian 
function. This  is the key to the elegant 
recursive properties of the Kalman filter.

The stages described above in the fig-
ures are now considered again mathe-
matically to derive the Kalman filter 
measurement update equations.

The prediction pdf represented by 
the red Gaussian function in Figure 3 is 
given by the equation

 ( )y r e
2

1; ,
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1 1 1
1
2 2 1

2
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r
n v

v
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n
-

-

. (8)

The measurement pdf represented by 
the blue Gaussian function in Figure 4 
is given by
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The information provided by these two pdfs 
is fused by multiplying the two  together, 
i.e., considering the prediction and the 
measurement together (see Figure 5). The 
new pdf representing the fusion of the 

information from the prediction and mea-
surement, and our best current estimate of 
the system, is therefore given by the prod-
uct of these two Gaussian functions
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(10)

The quadratic terms in this new 
function can expanded and then the 
whole expression rewritten in Gaussian 
form
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and
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These last two equations represent the 
measurement update steps of the 
Kalman filter algorithm, as will be 
shown explicitly below. However, to 
present a more general case, we need to 
consider an extension to this example.

In the example above, it was assumed 
that the predictions and measurements 
were made in the same coordinate frame 
and in the same units. This has resulted 
in a particularly concise pair of 

??????

Measurement (Noisy)

Prediction (Estimate)

[FIG4] Shows the measur ement of the location of the train at time t = 1 and the level of uncertainty in that noisy measurement, 
represented by the blue Gaussian pdf. The combined knowledge of this system is provided by multiplying these two pdfs 
together.

???

Measurement (Noisy)

Prediction (Estimate)

[FIG5] Shows the new pdf (green) generated by multiplying the pdfs associated with the prediction and measurement of the 
train’s location at time t = 1. This new pdf provides the best estimate of the location of the train, by fusing the data from the 
prediction and the measurement.

A KEY PROPERTY OF THE 
GAUSSIAN FUNCTION IS 

EXPLOITED AT THIS POINT: 
THE PRODUCT OF TWO 
GAUSSIAN FUNCTIONS 
IS ANOTHER GAUSSIAN 

FUNCTION.
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[lecture NOTES] continued

 equations representing the prediction 
and measurement update stages. It is 
 important to note however that in reality 
a function is usually required to map 
predictions and measurements into the 
same domain. In a more realistic exten-
sion to our example, the position of the 
train will be  predicted directly as a new 
distance along the railway line in units of 
meters, but the time of flight measure-
ments are recorded in units of seconds. 
To allow the prediction and measure-
ment pdfs to be multiplied together, one 
must be converted into the domain of 
the other, and it is standard practice to 
map the predictions into the measure-
ment domain via the transformation 
matrix Ht.

We now revisit (8) and (9) and, instead 
of allowing y1 and y2 to both represent val-
ues in meters along the railway track, we 
consider the distribution y2 to represent 
the time of flight in seconds for a radio 
signal propagating from a transmitter 
positioned at x = 0 to the antenna on the 
train. The spatial prediction pdf y1 is con-
verted into the measurement domain by 
scaling the function by c, the speed of 
light. Equations (8) and (9) therefore must 
be rewritten as
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and
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where both distributions are now defined 
in the measurement domain, radio sig-
nals propagate along the time “s” axis, 
and the measurement unit is the second.

Following the derivation as before 
we now find
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Substituting H c1=  and ( )K H 1
2v=  

H2 2
2
2

1v v+^ h results in

  K H1 2 1fused $n n n n= + -^ h. (17)

Similarly the fused variance estimate 
becomes
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We can now compare certain terms 
resulting from this scalar derivation 
with the standard vectors and matrices 
used in the Kalman filter algorithm:

 ■ xt tfused "n ;
t : the state vector fol-

lowing data fusion
 ■ xt t1 1"n -;

t : the state vector before 
data fusion, i.e., the prediction

 ■ Pt t
2
fused "v ; : the covariance matrix 

(confidence) following data fusion
 ■ Pt t 11

2
"v -; : the covariance matrix 

(confidence) before data fusion
 ■ z t2 "n : the measurement vector
 ■ Rt2

2
"v : the uncertainty matrix 

associated with a noisy set of mea-
surements

 ■ HH t" : the transformation matrix 
used to map state vector parameters 
into the measurement domain

 ■  KK
H

H
t2

1
2

2
2

1
2

"

v v

v
=

+

P H H P H R( )T T
t t t t t t t t1 1

1= +; ;- -
- : 

the Kalman gain.

It is now easy to see how the stan-
dard Kalman filter equations relate to 
(17) and (18) derived above:
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 P P K H Pt t t t t t t t1 1" = -; ; ;- - .

CONCLUSIONS
The Kalman filter can be taught using a 
simple derivation involving scalar math-
ematics, basic algebraic manipulations, 
and an easy-to-follow thought experi-
ment. This approach should permit stu-
dents lacking a strong mathematical 
interest to understand the core mathe-
matics underlying the Kalman filter in 
an intuitive manner and to understand 
that the recursive property of the filter 
are provided by the unique multiplica-
tive property of the Gaussian function. 
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