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Pitch and voicing determination of speech signals are
the two subproblems of voice source analysis. In voiced
speech, the vocal cords vibrate in a quasiperiodic way.
Speech segments with voiceless excitation are gener-
ated by turbulent air flow at a constriction or by the
release of a closure in the vocal tract. The parameters
we have to determine are the manner of excitation, i.e.,
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10.3.3 Temporal Structure Simplification... 193
10.3.4 Cascaded Solutions....................... 195

10.4 A Short Look into Voicing Determination. 195
10.4.1 Simultaneous Pitch

the presence of a voiced excitation and the presence of
a voiceless excitation, a problem we will refer to as voic-
ing determination and, for the segments of the speech
signal in which a voiced excitation is present, the rate of
vocal cord vibration, which is usually referred to as pitch
determination or fundamental frequency determination
in the literature.
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Unlike the analysis of vocal-tract parameters, where
a number of independent and equivalent representations
are possible, there is no alternative to the parameters
pitch and voicing, and the quality of a synthesized sig-
nal critically depends on their reliable and accurate
determination. This chapter presents a selection of the
methods applied in pitch and voicing determination. The
emphasis, however, is on pitch determination.

Over the last two decades, the task of fundamen-
tal frequency determination has become increasingly
popular in musical acoustics as well. In the begin-
ning the methodology was largely imported from the
speech community, but then the musical acoustics com-
munity developed algorithms and applications of their
own, which in turn became increasingly interesting to
the speech communication area. Hence it appears jus-
tified to include the aspect of fundamental frequency
determination of music signals and to present some of
the methods and specific problems of this area. One
specific problem is multipitch determination from poly-
phonic signals, a problem that might also occur in speech
when we have to separate two or more simultaneously
speaking voices.

Pitch determination has a rather long history which
goes back even beyond the times of vocoding. Liter-
ally hundreds of pitch determination algorithms (PDAs)
have been developed. The most important developments
leading to today’s state of the art were made in the
1960s and 1970s; most of the methods that are briefly
reviewed in this chapter were extensively discussed dur-
ing this period [10.1]. Since then, least-squares and other

statistical methods, particularly in connection with si-
nusoidal models [10.2], entered the domain. A number
of known methods were improved and refined, whereas
other solutions that required an amount of computational
effort that appeared prohibitive at the time the algorithm
was first developed were revived. With the widespread
use of databases containing many labeled and processed
speech data, it has nowadays also become possible to
thoroughly evaluate the performance of the algorithms.

The bibliography in [10.1], dating from 1983, in-
cludes about 2000 entries. To give a complete overview
of the more-recent developments, at least another 1000
bibliographic entries would have to be added. It goes
without saying that this is not possible here given the
space limitations. So we will necessarily have to present
a selection, and many important contributions cannot be
described.

The remainder of this chapter is organized as fol-
lows. In Sect. 10.1 the problems of pitch and voicing
determination are described, definitions of what is sub-
sumed under the term pitch are given, and the various
PDAs are grossly categorized. Sections 10.2 and 10.3
give a more-detailed description of selected PDAs.
Section 10.4 shortly reviews a selection of voicing de-
termination algorithms (VDAs); Sect. 10.5 deals with
questions of error analysis and evaluation. Selected ap-
plications are discussed in Sect. 10.6, and Sect. 10.7
finally presents a couple of new developments, such
as determining the instant of glottal closure or process-
ing signals that contain more than one pitch, such as
polyphonic music.

10.1 Pitch in Time-Variant Quasiperiodic Acoustic Signals

10.1.1 Basic Definitions

Pitch, i. e., the fundamental frequency Fp and fundamen-
tal period Tp of a (quasi)periodic signal, can be measured
in many ways. If a signal is completely stationary and
periodic, all these strategies — provided they operate cor-
rectly — lead to identical results. Since both speech and
musical signals, however, are nonstationary and time
variant, aspects of each strategy such as the starting
point of the measurement, the length of the measuring
interval, the way of averaging (if any), or the operating
domain (time, frequency, lag etc.) start to influence the
results and may lead to estimates that differ from algo-
rithm to algorithm even if all these results are correct
and accurate. Before entering a discussion on individ-
ual methods and applications, we must therefore have

a look at the parameter pitch and provide a clear defi-
nition of what should be measured and what is actually
measured.

A word on terminology first. There are three points
of view for looking at such a problem of acoustic signal
processing [10.3]: the production, the signal-processing,
and the perception points of view. For pitch deter-
mination of speech, the production point of view is
obviously oriented toward phonation in the human lar-
ynx; we will thus have to start from a time-domain
representation of the waveform as a train of laryn-
geal pulses. If a pitch determination algorithm (PDA)
works in a speech-production oriented way, it measures
individual laryngeal excitation cycles or, if some aver-
aging is performed, the rate of vocal-fold vibration. The
signal-processing point of view, which can be applied
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Fig.10.1a,b Time-domain definitions of 7. (a) Speech
signal (a couple of periods), (b) glottal waveform (recon-
structed). For further detail, see the text

to any acoustic signal, means that (quasi)periodicity
or at least cyclic behavior is observed, and that the
task is to extract those features that best represent
this periodicity. The pertinent terms are fundamental
frequency and fundamental period. If individual cy-
cles are determined, we may (somewhat inconsistently)
speak of pitch periods or simply of periods. The per-
ception point of view leads to a frequency-domain
representation since pitch sensation primarily corre-
sponds to a frequency [10.4, 5] even if a time-domain
mechanism is involved [10.6]. This point of view is as-
sociated with the original meaning of the term pitch.
Yet the term pitch has consistently been used as some
kind of common denominator and a general name for
all those terms, at least in the technical literature on
speech [10.7]. In the following, we will therefore use
the term pitch in this wider sense, even for musical
signals.

When we proceed from production to perception,
we arrive at five basic definitions of pitch that apply to
speech signals and could read as follows ([10.1, 8, 9];
Fig. 10.1):

1. To is defined as the elapsed time between two

successive laryngeal pulses. Measurement starts
at a well-specified point within the glottal cycle,
preferably at the instant of glottal closure.
PDAs that obey this definition will be able to locate
the points of glottal closure and to delimit individ-
ual laryngeal cycles. This goes beyond the scope of
ordinary pitch determination in speech; if only the
signal is available for the analysis, it must be totally
undistorted if reliable results are to be expected. For
music signals we can apply this definition if we an-
alyze a human voice or an instrument that operates
in a way similar to the human voice.

4a.

4b.

To is defined as the elapsed time between two
successive laryngeal pulses. Measurement starts
at an arbitrary point within an excitation cycle.
The choice of this point depends on the individual
method, but for a given PDA it is always located at
the same position within the cycle.

Time-domain PDAs usually follow this definition.
The reference point can be a significant extreme,
a certain zero crossing, etc. The signal is tracked
period by period in a synchronous way yielding
individual pitch periods. This principle can be ap-
plied to both speech and music signals. In speech it
may even be possible to derive the point of glottal
closure from the reference point when the signal is
undistorted.

Ty is defined as the elapsed time between two suc-
cessive excitation cycles. Measurement starts at an
arbitrary instant which is fixed according to exter-
nal conditions, and ends when a complete cycle has
elapsed.

This is an incremental definition. Ty still equals the
length of an individual period, but no longer from
the production point of view, since the definition
has nothing to do with an individual excitation
cycle. The synchronous method of processing is
maintained, but the phase relations between the la-
ryngeal waveform and the markers, i.e., the pitch
period delimiters at the output of the algorithm, are
lost. Once a reference point in time has been es-
tablished, it is kept as long as the measurement is
correct and the signal remains cyclic, for instance as
long as voicing continues. If this synchronization is
interrupted, the reference point is lost, and the next
reference point may be completely different with
respect to its position within an excitation cycle.
To is defined as the average length of several
periods. The way in which averaging is performed,
and how many periods are involved, is a matter of
the individual algorithm.

This is the standard definition of Ty for any
PDA that applies stationary short-term analysis,
including the implementations of frequency-
domain PDAs. Well-known methods, such as
cepstrum [10.10] or autocorrelation [10.11] ap-
proaches follow this definition. The pertinent
frequency-domain definition reads as follows.

Fy is defined as the fundamental frequency of an
(approximately) harmonic pattern in the (short-
term) spectral representation of the signal. It
depends on the particular method in which way
Fy is calculated from this pattern.
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The perception point of view of the problem leads to
a different definition of pitch [10.5]:

5. Fy is defined as the frequency of the sinusoid that

evokes the same perceived pitch (residue pitch,
virtual pitch, etc.) as the complex sound that rep-
resents the input speech signal.
Above all, this definition is a long-term defi-
nition [10.12]. Pitch perception theories were first
developed for stationary complex sounds with
constant Fp. The question of the behavior of
the human ear with respect to short-term per-
ception of time-variant pitch is not yet fully
understood. The difference limen for Fy changes,
for instance, goes up by at least an order
of magnitude when time-variant stimuli are in-
volved [10.13, 14]. In practice even such PDAs
that claim to be perception oriented [10.15, 16]
enter the frequency domain in a similar way as
in definition 4b, i.e., by some discrete Fourier
transform (DFT) with previous time-domain signal
windowing.

Since the results of individual algorithms differ ac-
cording to the definition they follow, and since these
five definitions are partly given in the time (or lag)
domain and partly in the frequency domain, it is nec-
essary to reestablish the relation between the time- and
frequency-domain representations of pitch,

Fo=1/Ty (10.1)
in such a way that, whenever a measurement is carried
out in one of these domains, however Ty or Fy is defined
there, the representation in the other domain will always
be established by this relation.

Creaky voice ‘ 20ms ‘
Modal voice

10.1.2 Why is the Problem Difficult?

Literally hundreds of methods for pitch determination
have been developed. None of them has been reported to
be error free for any signal, application, or environmental
condition.

At first glance the task appears simple: one just has
to detect the fundamental frequency of a quasiperiodic
signal. When dealing with speech signals, however, the
assumption of (quasi)periodicity is often far from reality.
For a number of reasons, the task of pitch determination
must be counted among the most difficult problems in
speech analysis.

® In principle, speech is a nonstationary process; the
momentary position of the vocal tract may change
abruptly at any time. This leads to drastic variations
in the temporal structure of the signal, even between
subsequent pitch periods.

® In fluent speech there are voiced segments that last
only a few pitch periods [10.17].

® Due to the flexibility of articulatory gestures and the
wide variety of voices, there exist a multitude of
possible temporal structures. Narrowband formants
at low harmonics (especially at the second or third
harmonic) are a particular source of trouble.

® For an arbitrary speech signal uttered by an un-
known speaker, the fundamental frequency can vary
over a range of almost four octaves (50—800 Hz).
Especially for female voices, Fp thus often coin-
cides with the first formant (the latter being about
200-1400 Hz). This causes problems when inverse-
filtering techniques are applied.

® The excitation signal itself is not always regular.
Even under normal conditions, i. €., when the voice
is neither hoarse nor pathologic, the glottal wave-
form exhibits occasional irregularities. In addition,
the voice may temporarily fall into vocal fry or creak
([10.18, 19]; Fig. 10.2).

® Additional problems arise in speech communication
systems, where the signal is often distorted or band
limited (for instance, in telephone or even mobile-
phone channels).

For music signals, the situation is comparable. The range
of Fy can be even wider than for speech. However, struc-
tural changes of the signal usually occur more slowly for
music. The maximum speed at which a musical instru-
ment can be played is about 10 notes per second so that
a single note usually lasts at least 100 ms. For speech,
on the other hand, 100 ms is already a lot of time which

Falsetto voice
FEETTETEEr el

Fig.10.2 Speech signal excitation with different voice registers
(male speaker, vowel [€])
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can consist of three or more segments. An additional
problem in music is that we may have to analyze poly-
phonic signals with several pitches present at the same
time.

10.1.3 Categorizing the Methods

A PDA is defined as consisting of three processing
steps: (a) the preprocessor, (b) the basic extractor,
and (c) the postprocessor [10.1,20]. The basic extrac-
tor performs the main task of converting the input
signal into a series of pitch estimates. The task
of the preprocessor is data reduction and enhance-
ment in order to facilitate the operation of the basic
extractor. The postprocessor (Sect. 10.5.4) is more ap-
plication oriented. Typical tasks are error correction,

10.2 Short-Term Analysis PDAs

In any short-term analysis PDA a short-term (or short-
time) transformation is performed in the preprocessor.
The speech signal is split into a series of frames; an in-
dividual frame is obtained by taking a limited number
of consecutive samples of the signal s(n) from a starting
point, n = g, to the ending point, n = ¢ + K. The frame
length K (or K + 1) is chosen short enough so that the
parameter(s) to be measured can be assumed approxi-
mately constant within the frame. On the other hand, K
must be large enough to guarantee that the parameter re-
mains measurable. For most short-term analysis PDAs
a frame thus requires two or three complete periods at
least. In extreme cases, when Fj changes abruptly, or
when the signal is irregular, these two conditions are in
conflict with each other and may become a source of
error [10.21]. The frame interval Q, i.e., the distance
between consecutive frames (or its reciprocal, the frame
rate), is determined in such a way that any significant
parameter change is documented in the measurements.
100 frames/s, i.e., Q = 10 ms, is a usual value.

The short-term transform can be thought of as behav-
ing like a concave mirror that focuses all the information
on pitch scattered across the frame into one single peak
in the spectral domain. This peak is then determined
by a peak detector (the usual implementation of the
basic extractor in this type of PDAs). Hence this al-
gorithm yields a sequence of average pitch estimates.
The short-term transform causes the phase relations be-
tween the spectral domain and the original signal to be
lost. At the same time, however, the algorithm loses

pitch tracking, and contour smoothing, or visualiza-
tion.

The existing PDA principles can be split into two
gross categories when the input signal of the basic ex-
tractor is taken as a criterion. If this signal has the same
time base as the original input signal, the PDA operates
in the time domain. It will thus measure Ty according
to one of the definitions 1-3 above. In all other cases,
somewhere in the preprocessor the time domain is left.
Since the input signal is time variant, this is done by
a short-term transform; and we will usually determine
Tp or Fy according to definitions 4a,b or 5; in some
cases definition 3 may apply as well. Accordingly, we
have the two categories: time-domain PDAs, and short-
term analysis PDAs. These will be discussed in the next
two sections.

much of its sensitivity to phase distortions and signal
degradation.

Not all the known spectral transforms show the de-
sired focusing effect. Those that do are in some way
related to the (power) spectrum: correlation techniques,
frequency-domain analysis, active modeling, and stat-
istical approaches (Fig. 10.3). These methods will be
discussed in more detail in the following.

10.2.1 Correlation and Distance Function

Among the correlation techniques we find the well-
known short-term autocorrelation function (ACF)

Short-term analysis pitch determination
t

¥

Frequency-domain

Distance function Cepstrum

d d

Correlation analysis
[m‘m A
¥

Autocorrelation Least-squares Active modeling

Harmonic analysis|

!

methods
d d Ao d

Fig.10.3 Methods of short-term analysis (short-time analysis) pitch
determination. (Time ¢ and lag d scales are identical; the frequency

f scale in the box ‘Harmonic analysis’ has been magnified)
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usually given by
q+K—d

r(d, q) = Z s(n)s(n+d) .

n=q
The autocorrelation function of a periodic signal exhibits
a strong peak when the lag d equals the period Ty/T of
the signal, 7 being the time-domain sampling interval
of the signal.

The autocorrelation PDA is among the oldest prin-
ciples for short-term analysis PDAs. However, it tends
to fail when the signal has a strong formant at the sec-
ond or third harmonic. Therefore this technique became
successful in pitch determination of band-limited speech
signals when it was combined with time-domain linear
or nonlinear preprocessing, such as center clipping or
inverse filtering [10.22,23].

The counterpart to autocorrelation is given by ap-
plying a distance function, for instance the average
magnitude difference function (AMDF) [10.24,25]:

q+K

AMDF(d, ¢)= Y _ |s(n) —s(n+d)| .

n=q

(10.2)

(10.3)

If the signal were strictly periodic, the distance func-
tion would vanish at the lag (delay time) d = Ty/T.
For quasiperiodic signals there will be at least a strong
minimum at this value of d. So, in contrast to other
short-term PDAs where the estimate of Tj or Fy is indi-
cated by a maximum whose position and value have to
be determined, the minimum has an ideal target value of
zero so that we only need to determine its position. For
this reason, distance functions do not require (quasi)-
stationarity within the measuring interval; they can cope
with very short frames of one pitch period or even less.
This principle is thus able to follow definition 3.

Shimamura and Kobayashi [10.26] combine ACF
and AMDF in that they weight the short-term ACF with
the reciprocal of the AMDEF, thus enhancing the principal
peak of the ACF at d = Ty /T. For the PDA they named
YIN, De Cheveigné and Kawahara [10.27] start from
a squared distance function,

q+K
D(d, q) =Y [s(n)—s(n+d)’ (10.4)
n=q
and normalize it to increase its values at low lags,
D,
D'd, q)= % ;d>0 (10.5)
7Y DG, 9)
§=1

with D’(0) = 1. In doing so, the authors were able to drop
the high-frequency limit of the measuring range and to

apply their PDA to high-pitched music signals as well.
The normalized distance function is locally interpolated
around its minima to increase the accuracy of the value
of D’ at the minima and the pitch estimate at the same
time.

Knowing that many errors arise from a mismatch
during short-term analysis (which results in too few or
too many pitch periods within a given frame), Fujisaki
et al. [10.21] investigated the influence of the relations
between the error rate, the frame length, and the actual
value of Ty for an autocorrelation PDA that operates
on the linear prediction residual. The optimum occurs
when the frame contains about three pitch periods. Since
this value is different for every individual voice, a fixed-
frame PDA runs nonoptimally for most situations. For an
exponential window, however, this optimum converges
to a time constant of about 10 ms for all voices. For
a number of PDAs, especially for the autocorrelation
PDA, such a window permits recursive updating of the
autocorrelation function, i.e., sample-by-sample pitch
estimation without excessive computational effort.

Hirose et al. [10.28] and Talkin [10.17] showed that
the autocorrelation function can also be computed in
a nonstationary way using a suitable normalization,

q+K

> s(n)s(n+d)

n=q

q+kK q+kK .
|:Z sz(n):| |:Z sz(n+d):|

n=q n=q

r(d, q) = (10.6)

In Talkin’s PDA a 7.5 ms frame is used; the effective
frame length is of course 7.5 ms plus the longest pitch
period in the measuring range.

Terez [10.29] applies a multidimensional embed-
ding function and a scatter plot procedure derived from
chaos theory. The underlying idea, however, is quite
straightforward and leads to a distance function in a mul-
tidimensional state space. The problem is how to convert
the one-dimensional speech signal into a multidimen-
sional representation. In Terez’s algorithm a vector is
formed from several equally spaced samples of the
signal,

s() = [s() s +d) - s+ N)|'

(where the frame reference point ¢ has been omitted
here and in the following for sake of simplicity) whose
components create an N-dimensional space, the state
space. In Terez’s algorithm, N = 3 and d = 12 samples
gave the best results. If the signal is voiced, i. e., cyclic,
the vector s will describe a closed curve in the state
space as time proceeds, and after one pitch period it is

(10.7)
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expected to come back near the starting point. We can
thus expect the (Euclidian) distance

D(n, p) = lls(n) —=s(n+ p)l (10.8)

generally to become a minimum when the trial period
p equals the true period Tp/T. If we compute D(n, p)
for all samples s(n) within the frame and all values of
p within the measuring range and count the number of
events, depending on p, where D lies below a prede-
termined threshold, we arrive at a periodicity histogram
that shows a sharp maximum at p = Tp/T.

As it develops the distance function D for all sam-
ples of a frame, this PDA follows the short-term analysis
principle. Yet one can think of running it with a compara-
tively short window, thus following definition 3.

The idea of using a multidimensional representa-
tion of the signal for a PDA (and VDA) dates back to the
1950s [10.1].In 1964 Rader [10.30] published the vector
PDA where he used the output signals from a filterbank
(cf. Yaggi [10.31], Sect. 10.3.3) and their Hilbert trans-
forms to form a multidimensional vector s(n, ¢). Rader
then used the Euclidian distance between the vector at
the starting point n = g of the measurement and the
points g + p to set up a distance function which shows
a strong minimum when p equals the true period Ty/T .
This PDA follows definition 3 as well.

Medan et al. [10.32] present a PDA (they called
the super-resolution PDA) that explicitly addresses the
problem of granularity due to signal sampling and ap-
plies a short-term window whose length depends on the
trial pitch period p in that it takes on a length of exactly
2p. A similarity function is formulated that expresses
the relation between the two periods in the window,

s(n,g)=a-s(n+p,q)+ten, q);
n=q, - ,q+p—1. (10.9)

Here, a is a positive amplitude factor that takes into
account possible intensity changes between adjacent
periods. Equation (10.9) is optimized with respect to
a and the unknown period p applying a least-squares
criterion to minimize the error e,

g+p—1 )
> [s(n)—as(n+ p)]
~ . n=q
p = argmin, , pr—
> s%(n)
n=q

(10.10)

This optimization finally results in maximization of the
correlation term

q+p—1

2
> s(n)s(n+ p)}

n=q

q+p-1 q+p-1
5 o [ e
n=q n=q

(10.112)

This resembles Talkin’s ACF approach [10.17] except
that here the trial period p determines the length of the
window as well.

From (10.11) a pitch period estimate can only be de-
rived as an integer number of samples. In a second pass,
this estimate is refined (to yield the super-resolution) by
expanding (10.11) for a fraction of a sample using linear
interpolation.

A

p = argmax

10.2.2 Cepstrum and Other
Double-Transform Methods

The sensitivity against strong first formants, especially
when they coincide with the second or third harmonic,
is one of the big problems in pitch determination. This
problem is suitably met by some procedure for spectral
flattening.

Spectral flattening can be achieved in several ways.
One of them is time-domain nonlinear distortion, such
as center clipping ([10.11, 22]; see previous section).
A second way is linear spectral distortion by inverse fil-
tering (e.g., [10.23]). A third way is frequency-domain
amplitude compression by nonlinear distortion of the
spectrum. This algorithm operates as follows: (1) short-
term analysis and transformation into the frequency
domain via a suitable discrete Fourier transform (DFT),
(2) nonlinear distortion in the frequency domain, and
(3) inverse DFT back into the time domain (which we
will call the lag domain to avoid ambiguity).

e or el o

Fig.10.4 Cepstrum pitch determination. Signal: vowel [i], 48 ms
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If we take the logarithm of the power spectrum as
the frequency-domain nonlinear distortion, we arrive at
the well-known cepstrum PDA ([10.10]; Fig. 10.4). In-
stead of the logarithmic spectrum, however, one can
also compute the amplitude spectrum or its square root
and transform it back [10.33, 34]. The inverse Fourier
transform of the power spectrum gives the autocorre-
lation function. All these so-called double-transform
techniques [10.33] lead to a lag-domain representation
that exhibits a strong maximum at the lagd = Ty /T . The
independent variable, lag (or guefrency, as it is called
with respect to the cepstrum [10.10]), has the physical
dimension of time, but as long as the phase relations are
discarded by the nonlinear distortion, all values of d re-
fer to a virtual point d = 0 where we will always find
a pitch pulse, and then the next one necessarily shows
upatd =Toy/T.

Two members of this group were already mentioned:
the autocorrelation PDA [10.11] and the cepstrum
PDA [10.10]. It is well known that the autocorrela-
tion function can be computed as the inverse Fourier
transform of the power spectrum. Here, the distortion
consists of taking the squared magnitude of the com-
plex spectrum. The cepstrum, on the other hand, uses
the logarithm of the spectrum. The two methods there-
fore differ only in the characteristics of the respective
nonlinear distortions applied in the spectral domain.
The cepstrum PDA is known to be rather insensitive
to strong formants at higher harmonics but to develop
a certain sensitivity to additive noise. The autocorrela-
tion PDA, on the other hand, is insensitive to noise but
rather sensitive to strong formants. Regarding the slope
of the distortion characteristic, we observe the dynamic
range of the spectrum being expanded by squaring the
spectrum for the autocorrelation PDA, whereas the spec-
trum is substantially flattened by taking the logarithm.
The two requirements — robustness against strong for-
mants and robustness against additive (white) noise —
are in some way contradictory. Expanding the dynamic
range of the spectrum emphasizes strong individual
components, such as formants, and suppresses wide-
band noise, whereas spectral flattening equalizes strong
components and at the same time raises the level of low-
energy regions in the spectrum, thus raising the level of
the noise as well. Thus it is worth looking for other char-
acteristics that perform spectral amplitude compression.
Sreenivas [10.36] proposed the fourth root of the power
spectrum instead of the logarithm. For larger amplitudes
this characteristic behaves very much like the logarithm;
for small amplitudes, however, it has the advantage of
going to zero and not to —oo. Weiss et al. [10.33] used the

amplitude spectrum, i. e., the magnitude of the complex
spectrum.

10.2.3 Frequency-Domain Methods:
Harmonic Analysis

Direct determination of Fy as the location of the lowest
peak in the power or amplitude spectrum is unreli-
able and inaccurate; it is preferable to investigate the
harmonic structure of the signal so that all harmonics
contribute to the estimate of Fy. One way to do this is
spectral compression combined with harmonic pattern
matching, which computes the fundamental frequency
as the greatest common divider of all harmonics. The
power spectrum is compressed along the frequency axis
by a factor of two, three etc. and then added to the orig-
inal power spectrum. This operation gives a peak at Fy
resulting from the coherent additive contribution of the
higher harmonics [10.35,37]. Some of these PDAs stem
from theories and functional models of pitch perception
in the human ear [10.12, 15, 16].

The PDA described by Martin [10.35] (Fig. 10.5)
modifies the harmonic pattern-matching principle in
such a way that the computational effort for the spectral
transform is minimized. The signal is first decimated
to 4kHz and then Fourier transformed by a 128 point
fast Fourier transform (FFT). This yields a spectral res-
olution of about 30 Hz, which is sufficient to represent

l Signal (32ms)
Decimate to 4kHz t
weight
l Amplitude spectrum
3 (0-2kHz, 64 samples)
128 point FFT
compute amplitude spectrum r
. ‘ After maximum selection
Select significant extremes
set everything else to zero f
l Spectrum after interpolation

Interpolate around maxima (0-2kHz, 2048 samples)

refine spectral resolution
I An L

Spectral comb filter
compute estimator A(p)

Spectral comb filter (example)

Pt Fyange L
Ap)t | Harmonic estimator
= arg max [4(p)] M‘VW\-A/\/] »
) {Fo=p=124Hz

Fig.10.5 Frequency-domain PDA by harmonic compres-
sion and pattern matching (after Martin [10.35])
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values of Fyp down to 60Hz. The algorithm then en-
hances any spectral information that may pertain to
a harmonic structure by preserving only those spectral
samples that represent local maxima or their immediate
neighbors and setting everything else to zero. To mea-
sure Fp with sufficient accuracy, the spectral resolution
is then increased to 1 Hz. A spectral comb filter, which
is applied over the whole range of Fy, yields the har-
monic estimation function A(p); the value of p where
this function reaches its maximum is taken as the es-
timate for Fy. In a more-recent version of this PDA,
Martin [10.38,39] applies a logarithmic frequency scale
for the computation of A(p), which results in another
substantial reduction of the computational effort and has
the additional advantage that the relative accuracy of the
PDA is now constant over the whole range of Fy.

Similar to Martin’s [10.38] PDA for speech,
Brown [10.41] developed a frequency-domain PDA for
music which uses a logarithmic frequency scale. In
Brown’s PDA the spacing on the frequency axis equals
a quarter tone (about 3%), i.e., 1/24 of an octave. In
such a scale that corresponds to a musical interval scale,
a harmonic structure, if the timbre is unchanged, al-
ways takes on the same pattern regardless of the value
of its fundamental frequency (Fig. 10.6). Consequently,
a pattern-recognition algorithm is applied to detect such
patterns in the spectrum and to locate their starting point
corresponding to Fp. The patterns themselves depend
on the kind of instrument analyzed and can be adjusted
according to the respective instruments.

Special attention is given to the frequency resolu-
tion of the PDA. To apply a pattern-recognition method,
patterns are expected to align with the semitone scale.
This requires the frequency scale spacing of a quarter

140l
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Fig.10.6 Harmonic patterns in log frequency scale (after
Brown and Puckette [10.40])

tone. To make sure that a harmonic shows up in one and
only one frequency bin, we need a window length of
34 fundamental periods to satisfy the sampling theorem
in the frequency domain. For Fp = 100 Hz this would
give a window of 340 ms, which is far beyond reality
for speech and even excessive for music. However, if
we adapt the window-length requirement to the funda-
mental frequency to be determined, we would need 34
periods at any Fy to be measured, which results in much
shorter windows for higher-frequency bins. For the DFT,
this leads to a window whose length is inversely propor-
tional to the bin’s frequency. If the spectral values are
computed individually, both an individual time-domain
window for each frequency bin and unequal spacing
of the frequency bins are possible. Brown and Puck-
ette [10.40] showed that a fast Fourier transform can
be applied if its kernel is slightly modified. The PDA by
Medan et al. [10.32] is a time-domain counterpart to this
approach.

As the accuracy of this PDA was not sufficient to
determine Fy for instruments that can vary their frequen-
cies continuously (such as string or wind instruments or
a human voice), and as the required window length was
excessive even for music, a PDA with a 25 ms win-
dow was developed [10.40] whose frequency resolution
was refined using a phase-change technique. This tech-
nique is based on the instantaneous-frequency approach
by Charpentier [10.42] (see below) who used the short-
term phase spectrum at two successive samples in time
to determine the frequencies of the individual harmon-
ics without needing spectral interpolation. When a Hann
window is used to weight the time signal, the time shift of
one sample can be recursively computed in the frequency
domain without needing another DFT.

Lahat et al. [10.43] transfer the autocorrelation
method into the frequency domain. The amplitude spec-
trum is passed through a bank of 16 spectral filters
(lifters), which cover the measuring range of Fy. At the
output of each lifter a frequency domain autocorrelation
function is calculated covering the respective range of
each lifter. The estimate for Fj is then determined as the
location of the maximum of that function and refined by
interpolation.

For harmonic analysis it is often convenient to es-
timate the number of harmonics, i.e., the order of
a harmonic model, simultaneously with the fundamen-
tal frequency. For instance, Doval and Rodet [10.44]
apply such a procedure for a PDA with an extremely
wide measuring range (40—4000 Hz) for music signals.
The algorithm is based on a harmonic-matching proce-
dure using a maximume-likelihood criterion. To obtain
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Fig.10.7a-c PDA with active model-
ing. (a) Signal: 32 ms, vowel [e], male
voice; (b) zeros of the 41-st-order
LP polynomial in the z plane (up-
per half; sampling frequency reduced
to 2kHz); (c) reconstructed impulse
response with zero phase and equal
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arapid initial estimate, the measuring range is split into
subranges that have an equal number of partials in the
frequency range for which the spectrum is analyzed. The
initial estimate is obtained by selecting the subrange that
is most likely to contain the optimal estimate for Fp. For
the final step of refining the estimate, only this subrange
is further processed.

The principle of instantaneous frequency (IF)
was introduced into pitch determination by Charpen-
tier [10.42]. Instantaneous frequency is defined as the
time derivative of the instantaneous phase,

o(t) == % for s(t) = a(t) expliw(t)t] , (10.12)

where a(¢) is the instantaneous amplitude. The short-
term Fourier transform can be viewed as a set of
bandpass filters as follows,

S(f,1)= f s(yw(t —1)e T 4r (10.13)
— e 2mift / s(f)w(t—'r)e_znif(t_f)df
F(f, 1) = e"VS(f,1). (10.14)

Here, the signal F is the output of the bandpass centered
around the frequency f. The IF for this signal becomes

d
o(fit)= P arg[F(f, )] . (10.15)

There are different ways to effectively compute the
IF from the discrete short-term spectrum [10.42,45,46].
The bandpass filters have a certain bandwidth that de-
pends on the time-domain window applied [10.42] and
extends over more than one DFT coefficient. If we now
compute the IF for each frequency bin of the DFT spec-
trum of a voiced speech signal, the IFs of bins adjacent
to a strong harmonic tend to cluster around the true
frequency of this harmonic, and so it is possible to
enhance the harmonics in the spectrum if the bins are re-
grouped according to their respective IFs, thus forming

amplitude of all partials

the so-called IF amplitude spectrum. Abe et al. [10.45]
transform the IF amplitude spectrum back into the
time domain, thus obtaining a representation similar to
that of a double-spectral-transform PDA. Nakatani and
Irino [10.46] define a spectral dominance function that
suppresses insignificant information in the IF amplitude
spectrum and derive Fp by harmonic matching of this
dominance function.

10.2.4 Active Modeling

Linear prediction (LP) is usually applied to estimating
the transfer function of the vocal tract. If a high-order
LP filter is applied to a voiced speech signal, however,
its poles will match the individual harmonics of the sig-
nal rather than the resonances of the vocal tract. A PDA
based on this principle was designed by Azal (unpub-
lished; see [10.47], or [10.1]). The algorithm operates as
follows (Fig. 10.7):

® After decimation to 2kHz, the signal is analyzed
with a 41-st-order LP filter using the covariance
method of linear prediction. The high order guar-
antees that even at the low end of the Fy range, i.e.,
at Fyp = 50Hz, two complex poles are available for
each harmonic. Each complex pole pair represents
an exponentially decaying (or rising) oscillation.

® To eliminate phase information, all residues at the
pole locations in the z plane are set to unity. The
pertinent computation can be avoided when the lo-
cations of the poles are explicitly determined.

® The impulse response of the filter now supplies
a waveform for the estimation of Ty (Fig. 10.7c¢).
When the poles are explicitly available, it is sufficient
to determine and to sum up the impulse responses
of the individual second-order partial filters. This
method has the advantage that the sampling fre-
quency of the impulse response — and with it the
measurement accuracy — can easily be increased. In
addition, poles that are situated outside or far inside
the unit circle can be modified or excluded from
further processing.
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Arévalo [10.48] showed that this PDA is extremely
robust to noise and that one can also use it with short
frame lengths so that it matches definition 3.

10.2.5 Least Squares
and Other Statistical Methods

The first statistical approach in pitch determination
is based on a least-squares principle. Originally this
approach was based on a mathematical procedure to
separate a periodic signal of unknown period 7p from
Gaussian noise within a finite signal window [10.49]. It
computes the energy of the periodic component at a trial
period t and varies t over the whole range of 7p. The
value of 7 that maximizes the energy of the periodic
component for the given signal is then taken as the esti-
mate of Ty. Friedman [10.50] showed that this PDA has
a trivial maximum when t equals the window length K,
and developed a work-around.

With respect to robustness, the least-squares PDA
behaves like the autocorrelation principle: it is extremely
robust against noise but somewhat sensitive to strong
formants. However, there is no algorithmic shortcut so
that an order of K> operations are needed to compute
the estimate for a frame. So this PDA was slower than
its counterparts that can make use of the FFT; hence this
principle was not further pursued until more powerful
computers became available.

The method was revived with the upcoming of the si-
nusoidal model of speech [10.2]. The continuous speech
signal s(n) is modeled as a sum of sinusoids with time-
varying amplitudes, frequencies, and phases. Within
a short-term frame, these parameters can be assumed
constant,

M
s(n) = Z Sm exp (i2,n+ ) - (10.16)

m=1

The parameters of this model are estimated from the
peaks within the short-term Fourier spectrum of the
frame. This can be converted into a PDA [10.51] when
the sinusoidal representation in (10.16), whose frequen-
cies are generally not harmonics of a fundamental, is
matched against a harmonic model,

K

u(n) =y Up exp (ik2on+ ) . (10.17)
k=1

Starting from the difference between s(n) and u(n), the

match is done using a modified least-squares criterion,
which finally results in maximizing the expression with

respect to the trial (angular) fundamental frequency p,

K(p)
op)="Y_ Ulkp)
k=1

1
x {erg%c p)[Sm D(2y, —kp)] — EU (kp)} .

(10.18)

Like the model of virtual-pitch perception [10.4], this
criterion takes into account near-coincidences between
a harmonic kp and the (angular) frequency £2,, of the
respective component of the sinusoidal model, and it
defines a lobe L of width p around each harmonic and
the corresponding weighting function

D(2 —kpy = S22 —kp)/p ] (10.19)

(£2—kp)/p

within the lobe, and zero outside. The lobe becomes
narrow for low values of p and broader for higher values.
If there are several components £2,,, within a lobe, only
the largest is taken. The amplitude estimates U(kp) are
derived from a smoothed Fourier or LP spectrum of the
frame. The measurement may be confined to a subband
of the signal, e.g., to 2kHz.

Both the sinusoidal model and the PDA have been
applied to speech and music signals.

For pitch detection in noisy speech, third-order
statistics are occasionally applied. One such PDA was
developed by Moreno and Fonollosa [10.52]. Their PDA
applies a special third-order cumulant,

C(0,d):= Zs(n) s(n) s(n+d), (10.20)

n

which tends to vanish for noises with symmetrical dis-
tribution, such as Gaussian noise. It also tends to vanish
for voiceless fricatives, as Wells [10.53] discovered for
his VDA. If the signal is periodic, the cumulant C is also
periodic, but one cannot expect a maximum to occur
at d = 0. This PDA thus treats C(0, d) like an ordinary
signal, takes the autocorrelation function, and derives
Tp therefrom in the same way as it is done in an or-
dinary autocorrelation PDA. The algorithm was tested
with speech in various additive noises at various signal-
to-noise ratios (SNRs) against an autocorrelation PDA
(without any pre- or postprocessing) and found superior,
especially when noise levels were high.

The PDA by Tabrikian et al. [10.54] determines the
parameters of a harmonic-plus-noise model by max-
imizing a log-likelihood measure, i.e., the unknown
fundamental frequency, the spectral amplitudes of the
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harmonics, and the variance of the noise, which is mod-
eled to be Gaussian. It then performs pitch tracking over
consecutive frames using a method based on the max-
imum a posteriori probability. The authors tested their
PDA under extreme noise conditions and found that it
worked even at SNRs of —5 dB and worse. A similar al-
gorithm was developed by Godsill and Davy [10.55] for
music signals.

10.2.6 Concluding Remarks

Short-term analysis PDAs provide a sequence of average
pitch estimates rather than a measurement of individual
periods. They are not very sensitive to phase distortions
or to the absence of the first partial. They collect informa-
tion about pitch from many features and (mostly) from
several periods of the signal. They are thus robust against
additive noise. Some of them still work at SNRs of 0 dB
or worse. On the other hand, they are sensitive when the
signal does not fulfil their basic requirement, i. e., peri-
odicity. Rapid within-frame changes of Fy of irregularly
excited signals (e.g., laryngealizations) lead to failure.

10.3 Selected Time-Domain Methods

This category of PDAs is less homogenous than that
of the short-term analysis methods. One possibility to
group them is according to how the data reduction is
distributed between the preprocessor and the basic ex-
tractor, and we find most of these PDAs between two
extremes.

® Datareduction is done in the preprocessor. In the ex-
treme case, only the waveform of the first harmonic
is offered to the basic extractor. The basic extractor
processes this harmonic and derives pitch from it.

® Data reduction is done in the basic extractor, which
then has to cope with the whole complexity of the
temporal signal structure. In the extreme case, the
preprocessor is totally omitted. The basic extractor
investigates the temporal structure of the signal, ex-
tracts some key features, and derives the information
on pitch therefrom.

A third principle is situated somewhere in the mid-
dle of these extremes. Temporal structure simplification
performs a moderate data reduction in the preprocessor
but preserves the harmonic structure of the signal.

Time-domain PDAs are principally able to track the
signal period by period. At the output of the basic extrac-

One advantage of this principle that is not always
explicitly mentioned is the ability to give rather accu-
rate estimates and to overcome measurement granularity
due to signal sampling. To decrease computational com-
plexity, many of these PDAs perform some moderate
low-pass filtering and/or decrease the sampling fre-
quency in the first step and thus increase the granularity.
Once a crude estimate is available, it can be refined
via a local interpolation routine, which is frequently
implemented. This is most evident in active modeling
(Sect. 10.2.4) where the impulse response of the model
filter can be generated with an arbitrarily high sampling
frequency independently from the sampling frequency
of the signal. However, any other representation from
which pitch is derived — ACF, AMDE, cepstrum, etc.
— can be treated like a signal and can be locally up-
sampled, e.g., via a standard multirate finite impulse
response (FIR) filter, to increase measurement accuracy.
The evaluation by McGonegal et al. [10.56] showed that
an increased accuracy is honored by the human ear when
listening to synthetic speech generated with such a pitch
contour.

tor we usually obtain a sequence of period boundaries
(pitch markers). Since the local information on pitch is
taken from each period individually, time-domain PDAs
are sensitive to local signal degradations and are thus
less reliable than most of their short-term analysis coun-
terparts. On the other hand, time-domain PDAs may still
operate correctly even when the signal itself is aperiodic
(but still cyclic), in speech for instance due to temporary
voice perturbation or laryngealization.

Most time-domain PDAs, especially those which
follow definitions 2 and 3, were developed before the
1990s. With the introduction of time-domain pitch
modification methods [10.57], research in this area
concentrated on high-precision algorithms for determi-
nation of the instant of glottal closure. This issue will be
discussed in Sect. 10.7.1.

10.3.1 Temporal Structure Investigation

A pitch period in speech is the truncated response of
the vocal tract to an individual glottal impulse. Since
the vocal tract behaves like a lossy linear system, its
impulse response consists of a sum of exponentially
damped oscillations. It is therefore to be expected that
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the magnitude of the significant peaks in the signal is
greater at the beginning of the period than versus the end.
Appropriate investigation of the signal peaks (maxima
and/or minima) leads to an indication of periodicity.

There are some problems with this approach, how-
ever. First, the frequencies of the dominant damped
waveforms are determined by the local formant pattern
and may change abruptly. Second, damping of the for-
mants, particularly of a low first formant, is often quite
weak and can be hidden by temporary changes of the sig-
nal level due to articulation. Third, if the signal is phase
distorted, different formants may be excited at differ-
ent points in time. These problems are solvable but lead
to complex algorithmic solutions investigating a great
variety of temporal structures.

The usual way to carry out the analysis is the fol-
lowing [10.58].

® Do a moderate low-pass filtering to remove the
influence of higher formants.

® Determine all the local maxima and minima in the
signal.

® Exclude those extremes that are found to be insignif-
icant until one significant point per period is left; this
point will become the local pitch marker.

® Reject obviously wrong markers by local correction.

Many individual (and heuristic) solutions have been
developed, but they cannot be reviewed here for lack
of space. For more details, the reader is referred to the
literature [10.1].

10.3.2 Fundamental Harmonic Processing

Fo can be detected in the signal via the waveform
of the fundamental harmonic. If present in the signal,
this harmonic is extracted from the signal by extensive
low-pass filtering in the preprocessor. The basic extrac-
tor can then be relatively simple. Figure 10.8 shows
the principle of three basic extractors: zero-crossings
analysis as the simplest one, nonzero threshold ana-
lysis, and finally threshold analysis with hysteresis. The
zero-crossings analysis basic extractor sets a marker
whenever the zero axis is crossed with a defined po-
larity. This requires that the input waveform has two
and only two zero crossings per period. The threshold
analysis basic extractor sets a marker whenever a given
nonzero threshold is exceeded. When operating with
hysteresis, the marker is only set when a second (lower)
threshold is crossed in the opposite direction. This more-
elaborate device requires less low-pass filtering in the
preprocessor.

Threshold analysis basic extractor
with hysteresis

(Nonzero) threshold analysis basic extractor
I U U I 1 I 1 I I I

Zero—crossings analysis basic extractor
NNANNVANV, NV WAV W
JRRV RV RV AR VRV Y.

AAFATAT AT @

Fig.10.8 Example of the performance of basic extractors
for fundamental harmonic extraction in speech. Signals:
(1) original (vowel [i], 32ms), (2) low-pass filtered at
6dB/oct, (3) low-pass filtered at 12dB/oct, and (4) low-
pass filtered at 18 dB/oct. The signal is such that success
and failure are displayed at the same time

The requirement for extensive low-pass filtering is
a severe weak point of this otherwise fast and simple
principle when applied to speech signals. In a number
of applications, however, such as voice quality meas-
urement or the preparation of reference elements for
time-domain speech synthesis, where the signals are
expected to be clean, the use of a PDA applying first-
partial processing may be advantageous. Dologlou and
Carayannis [10.59] proposed a PDA that overcomes
a great deal of the problems associated with the low-
pass filter. An adaptive linear-phase low-pass filter that
consists of a variable-length cascade of second-order fil-
ters with a double zero in the z plane at z = —1 is applied.
These filters are consecutively applied to the input sig-
nal; after each iteration the algorithm tests whether the
higher harmonics are sufficiently attenuated; if they are,
the filter stops. Tp is then derived from the remaining
first partial by a simple maximum detector. Very low-
frequency noise is tolerable since it barely influences the
positions of the maxima.

10.3.3 Temporal Structure Simplification

Algorithms of this type take some intermediate posi-
tion between the principles of structural analysis and
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Fig.10.9 Example PDA by Yaggi (1962 [10.31]). The signal is split into 19 subbands. In each channel (CH) the filtered
signal is rectified and smoothed; the weighted outputs of the channels are added, and pitch markers are derived from the

resulting signal via maximum detection

fundamental harmonic extraction. The majority of these
algorithms follow one of two principles: (1) inverse fil-
tering, and (2) epoch detection. Both of these principles
deal with the fact that the laryngeal excitation function
has a temporal structure that is much simpler and more
regular than the temporal structure of the speech signal
itself, and both methods when they work properly are
able to follow definition 1 if the signal is not grossly
phase distorted.

The inverse filter approach cancels the transfer func-
tion of the vocal tract and thus reconstructs the laryngeal
excitation function. If one is interested in pitch only and
not in the excitation function itself, a crude approxima-
tion of the inverse filter is sufficient. For instance, we
can confine the analysis to the first formant [10.60].

The second principle, epoch extraction [10.61], is
based on the fact that at the beginning of each laryngeal
pulse there is a discontinuity in the second derivative of
the excitation function. Usually this discontinuity can-
not be reliably detected in the speech signal because of
phase distortions that occur when the waveform passes

the vocal tract. The signal is thus first phase shifted by
90° (by applying a Hilbert transform). The squares of the
original and the phase-shifted signals are then added to
yield a new signal that shows a distinct peak at the time
when the discontinuity in the excitation function occurs.
In principle this yields the instantaneous amplitude of
the complex analytic signal constructed from the origi-
nal signal as its real part and the phase-shifted signal as
its imaginary part.

The original method [10.61] works best when the
spectrum of the investigated signal is flat to some extent.
To enforce spectral flatness, the analyzed signal can be
band limited to high frequencies well above the narrow-
band lower formants. Another way is to analyze the LP
residual or to filter the signal into subbands.

One prototype of these algorithms, which never be-
came widely known, was developed by Yaggi [10.31]. It
splits the signal into 19 subbands and subsequently rec-
tifies and smoothes the signal in each channel so that
the envelope is extracted. The individual channels are
then added, and the individual periods are derived from
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the resulting signal (Fig. 10.9). Another prototype is the
PDA by Dolansky [10.62] that models the envelope of
the pitch period by a decaying exponential function (in
analog technology) and sets a marker whenever the sig-
nal exceeds the modeled envelope, resetting the envelope
at the same time.

Both the inverse filter approach and the epoch de-
tection principle have one weak point, which frequently
arises with female voices. When Fj is high, it may co-
incide with the first formant F1. In this case the signal
becomes nearly sinusoidal since we have something like
a double pole glottal formant and F1 at the same fre-
quency) in the overall transfer function. If an inverse
filter is not blocked in this case, it removes the funda-
mental harmonic from the signal and brings the PDA
to failure. For epoch detection, we know that the enve-
lope of a sinusoid is a constant (cos® x 4 sin” x = 1) and
does not show any discontinuity. Hence these algorithms
need a work-around for low values of F1.

This drawback was overcome by the finding that the
global statistical properties of the waveform change with
glottal opening and closing as well. We will come back
to this issue in Sect. 10.7.1.

Structural analysis of the signal itself or of some
simplified representation, especially when many possi-
ble structures have to be reviewed, is a good candidate for

self-organizing, nonlinear pattern-recognition methods,
i.e., for artificial neural networks. Such a PDA for
speech was introduced by Howard and Walliker [10.63].
The speech signal is divided into nine subbands with
a subsequent half-wave rectification and second-order
linear smoothing in each channel. The underlying idea
is to obtain a representation similar to thatin a wide-band
spectrogram. The basic extractor consists of a four-layer
perceptron structure, the input layer consisting of 41
successive samples in each subband. Two hidden lay-
ers with 10 units each and a fully connected network are
followed by a one-unit output layer, which is intended to
yield an impulse when the network encounters a signal
structure associated to the instant of glottal closure. The
network is trained using (differentiated) output signals
of alaryngograph as reference data. Such a structure has
the advantage that it can be based upon several features
occurring at different instants during a pitch period.

10.3.4 Cascaded Solutions

Among the many possibilities of such solutions, one
is of particular interest here: the cascade of a robust
short-term PDA and an accurate but less-robust time-
domain PDA. Such an algorithm is further described in
Sect. 10.7.1.

10.4 A Short Look into Voicing Determination

The task of voicing determination of speech signals may
be split up into two subtasks: (1) a decision of whether
or not a voiced excitation is present and (2) a decision of
whether or not a voiceless excitation is present. If nei-
ther of these excitations is active, the current segment
represents pause or silence; if both excitations are sim-
ultaneously active, we speak of mixed excitation. The
two features voiced and voiceless are binary unless they
occur simultaneously. In segments with mixed excita-
tion the degree of voicing — for instance, the energy
ratio of the voiced and voiceless excitations — may play
arole, although this feature is rarely exploited.

Most voicing determination algorithms (VDAs) thus
apply decisions. VDAs exploit almost any elementary
speech signal parameter that may be computed indepen-
dently of the type of input signal: energy, amplitude,
short-term autocorrelation coefficients, zero-crossings
count, ratio of signal amplitudes in different subbands
or after different types of filtering, linear prediction er-
ror, or the salience of a pitch estimate. According to the

method applied, VDAs can be grouped into three ma-
jor categories: (1) simple threshold analysis algorithms,
which exploit only a few basic parameters [10.64];
(2) more-complex algorithms based on pattern recog-
nition methods; and (3) integrated algorithms for both
voicing and pitch determination.

In this section, we distinguish between voiceless and
unvoiced. Unvoiced means that a frame can be anything
but voiced, i.e., it can be voiceless or silence. Voice-
less means that voiceless excitation is present so that
the frame is neither voiced nor silence. We will not re-
view such algorithms that distinguish between speech
and nonspeech — many of such algorithms have been
developed for other applications, such as voice over
Internet protocol (IP) or bandwidth reduction in mo-
bile telephony (see, for instance, Davis et al. [10.65],
for a survey). The basic task of the VDA in the con-
text of pitch determination is to decide whether a frame
or signal segment is voiced (and thus subject to pitch
determination) or unvoiced.
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10.4.1 Simultaneous Pitch
and Voicing Determination

A number of PDAs — usually pertaining to the short-
term analysis category — permit estimation the salience
of their results without having to know the actual value
of the pitch estimate. This is always possible when the
amplitude of the significant maximum or minimum at 7
or Fp in the basic extractor of the PDA can be compared
to a reference value. As an example, the ratio of the
values of the autocorrelation function at d = T and at
d = 0 (the latter equalling the signal energy) gives a di-
rect measure of the degree of periodicity of the signal. It
is dangerous, however, to rely on this feature alone. Of
course, it is correct (and almost trivial) to state that pitch
can exist only when the signal is voiced. However, this
statement cannot be simply reversed; i. e., we cannot say
that a segment is unvoiced because pitch is not existent
(or not measurable). The corresponding PDA may mo-
mentarily fail, or the signal may be voiced but irregular
([10.47, 66]; see also Fig. 10.2 or Sect. 10.1.2). Ampli-
tude changes and especially small intraframe changes
of Fy severely degrade the salience of the pitch es-
timate [10.36]. It is thus at least necessary to check
adjacent frames before making a decision [10.10]. In this
respect, such a VDA behaves very much like a median
smoother in pitch determination.

In principle, these VDAs do not make a voiced—
unvoiced discrimination; rather they check for the
presence of a (sufficient but not absolutely necessary)
condition for a voiced signal. An improvement is to be
expected when such criteria are only used for declaring
a frame as voiced, and when the decision to declare it as
unvoiced is based on additional criteria [10.67].

The VDA by Lobanov [10.68] avoids this problem,
although it is based on a similar principle. A voice-
less segment of speech represents a stochastic signal
which is continuously excited. In contrast, the excita-
tion of a voiced signal is confined to a few instants per
period; major parts of the pitch period are composed of
exponentially decaying oscillations, and adjacent sam-
ples of the signal are highly correlated. This contrast of
a highly stochastic versus a highly deterministic signal
is preserved even when a voiced signal becomes irreg-
ular or aperiodic. Lobanov’s VDA exploits this feature
by computing the Hilbert transform of the speech signal,
combining the original signal and its Hilbert transform
to yield the complex analytic signal, and plotting the mo-
mentary amplitude and phase of the analytic signal in
the so-called phase plane. For voiced frames the analytic
signal will describe a closed curve. During unvoiced

segments, where the signal and its Hilbert transform
are much less correlated, the curve will touch almost
any point in the phase plane within a short interval. In
Lobanov’s algorithm the phase plane is crudely quan-
tized, and the algorithm simply counts the number of
points which have been touched within a given frame.

Talkin’s PDA [10.17] integrates the VDA into
the postprocessor that applies dynamic programming.
Among the various estimates for Ty to be tracked, there
is always a candidate unvoiced, which is selected when
it lies on the optimal path (Sect. 10.5.4).

Ahmadi and Spanias [10.67] present an improved
VDA module within an implementation of the cepstrum
PDA [10.10] for telephone-bandwidth speech. An utter-
ance is processed in two passes. The first pass, covering
the whole utterance, is to derive gross initial thresholds
for a rough voiced—unvoiced decision. Distributions are
taken for the relative amplitude of the main cepstral peak,
the relative zero-crossings rate, and normalized signal
energy. The medians of these distributions serve as ini-
tial thresholds for the decisions to be made in the second
pass. A frame is roughly declared unvoiced if its en-
ergy and cepstral peak amplitudes are below and its zero
crossings rate is above the respective threshold. Frames
are declared voiced according to their cepstral peak
amplitudes and a continuity criterion. The algorithm
was evaluated on data from the TIMIT corpus; refer-
ence values were obtained using the PDA by McAulay
and Quatieri [10.51] with visual inspection of uncer-
tain frames. For clean speech, voiced-to-unvoiced and
unvoiced-to-voiced errors together were about 1.5%.

McAuley and Quatieri [10.51] use their harmonic-
model PDA (Sect. 10.2.5) to incorporate a VDA. It is
based on the energy ratio between the harmonic energy
and the energy of the nonharmonic part of the signal (the
noise) which consists of everything not captured by the
harmonic structure. Frames for which this ratio is above
10dB are certainly voiced, while those for which the
ratio is below 4 dB are certainly unvoiced.

Fisher et al. [10.69] start from a generalized log
likelihood measure that is separately and independently
evaluated for the two hypotheses that the frame is
(1) voiced, or that it is (2) unvoiced. The measure
for the frame being voiced is based on the aforemen-
tioned ratio between harmonic and nonharmonic energy,
whereas the measure for unvoiced is based on a model
of colored Gaussian noise. The hypothesis with the
higher likelihood value wins for each frame; a dynamic-
programming postprocessor (Sect. 10.5.4) integrates the
VDA into the PDA which is also based on the harmonic-
plus-noise model.
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10.4.2 Pattern-Recognition VDAs

One of the motivations for applying a pattern-
recognition algorithm in a VDA was the wish to get
away from the conjunction of voicing determination and
pitch determination [10.70]. The VDA by Atal and Ra-
biner [10.70] (the first of a series of VDAs developed at
Bell Laboratories in the late 1970s) uses a statistical clas-
sifier and is based on five parameters: the signal energy,
the zero-crossing rate, the autocorrelation coefficient at
a delay of one sample, the first predictor coefficient of
a 12 pole LP analysis, and the energy of the normalized
prediction error. For a given environmental condition
the algorithm works well, but it is rather sensitive to en-
vironmental changes, e.g., from high-quality speech to
a telephone channel [10.47].

The usual classification problems in speech recog-
nition, where we have to cope with a large number of
different classes, require that the input parameters form
specific clusters in the parameter space, which are then
separated by the classifier. In contrast, the voicing deter-
mination problem has at most four categories (silence,
voiced, voiceless, and mixed) and the distribution of
the patterns in the parameter space is rather diffuse.
It is thus appropriate to concentrate the VDA on pat-
terns that are situated at or near the boundaries between

10.5 Evaluation and Postprocessing

To evaluate the performance of a measuring device, one
should have another instrument with at least the same ac-
curacy. If this is not available, at least objective criteria —
or data — are required to check and adjust the behavior of
the new device. In pitch and voicing determination both
these bases of comparison are tedious to generate. There
is no VDA or PDA that operates without errors [10.47].
There is no reference algorithm, even with instrumen-
tal support, that operates completely without manual
inspection or control [10.8,72]. Yet nowadays speech
databases with reference pitch contours and voicing in-
formation have become widely available so that at least
reliable reference data are there and are being used for
evaluation.

In this section, we first deal with the question of
how to generate reference data (Sect. 10.5.1). Then we
consider the question of error analysis (Sect. 10.5.2)
and present the results of some comparative evaluations
(Sect. 10.5.3). Finally, we describe the problem of pitch
tracking (Sect. 10.5.4), which is the foremost task of the
postprocessor.

the different categories in the parameter space. Such
a VDA was developed by Siegel and Bessey [10.66].
For some applications, such as high-quality analysis—
synthesis systems, incorporation of a mixed excitation
source is desirable: (1) for voiced fricatives, and (2) for
some high vowels, which tend to become partly devoiced
in connected speech [10.71]. Siegel and Bessey further
found that for the voiced—voiceless—mixed classifica-
tion, the number of features used for a voiced-unvoiced
classifier is insufficient. Their VDA is realized in two
steps using a binary decision tree structure. The first
step is a classifier which separates frames that are
predominantly voiced from those that are predomi-
nantly unvoiced. It uses a minimum-distance statistical
classifier exploiting seven features: normalized auto-
correlation coefficient at unit sample delay, minimum
normalized LP error, zero-crossings rate, signal energy,
overall degree of periodicity (via AMDF), and degree
of periodicity measured via the cepstrum in two sub-
bands. In both categories the mixed frames are split off
during the second step. The voiced—mixed decision uses
another six features, mostly cepstral and LP measures,
whereas the voiceless—mixed decision is based on two
features alone. The VDA is reported to work with 94%
overall accuracy and 77% correct identification of the
mixed frames.

10.5.1 Developing Reference PDAs
with Instrumental Help

A number of evaluations compared the algorithm(s) to
be tested to the results of a well-known algorithm such
as the cepstrum PDA, whose performance was known
to be good. Rabiner et al. [10.47] used an interactive
PDA to generate reference data. This procedure proved
reliable and accurate but required a great deal of hu-
man work. Other evaluations [10.1] used the output
signal of a vocoder for which the pitch contour was
exactly known or the output signal of a mechanic ac-
celerometer which derives the information on pitch from
the vibrations of the neck tissue at the larynx. The
latter device [10.73] was used by Viswanathan and Rus-
sell [10.74] for their evaluation of five PDAs. Indefrey
et al. [10.34] used a laryngograph to obtain the signal
for generating a reference contour.

Among the algorithms used for determining a ref-
erence pitch contour, methods that make use of an
instrument (such as a mechanic accelerometer or a laryn-
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gograph) that derives pitch directly from the laryngeal
waveform have been shown to be most effective. This
type of algorithm avoids most errors pertinent to the
problem of pitch determination from the speech signal,
and permits using natural speech for the evaluation of
the performance of PDAs. Among the many instruments
available, the laryngograph [10.72,75] is especially well
suited for this kind of application. It is robust and
reliable, does not prevent the speaker from natural articu-
lation, and gives a good estimate for the instant of glottal
closure. A number of PDAs have been designed for this
device [10.8,72]. In addition, Childers et al. [10.76] pro-
pose a four-category VDA that exploits the speech signal
and the laryngogram.

The principle of the laryngograph [10.75] is well
known. A small high-frequency electric current is passed
through the larynx by a pair of electrodes that are pressed
against the neck at the position of the larynx from both
sides. The opening and closing of the glottis during each
pitch period cause the laryngeal conductance to vary;
thus the high-frequency current is amplitude modulated.
In the receiver the current is demodulated and ampli-
fied. Finally, the resulting signal is high-pass filtered
to remove unwanted low-frequency components due to
vertical movement of the larynx.

Figure 10.10 shows an example of the laryngogram
(the output signal of the laryngograph) together with the
corresponding speech signal. In contrast to the speech
signal, the laryngogram is barely affected by the instan-
taneous configuration of the vocal tract, and the changes
in shape or amplitude are comparatively small. Since
every glottal cycle is represented by a single pulse, the
use of the laryngograph reliably suppresses gross period-
determination errors. In addition, it supplies the basis for
a good voiced—unvoiced discrimination since the laryn-
gogram is almost zero during unvoiced segments, when
the glottis is always open. Nonetheless, the laryngograph
is not free from problems: it may fail temporarily or per-

Speech signal (beginning of [ja])
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Larynéogrém

Differentiated laryngogram
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Fig.10.10 Speech signal, laryngogram, differentiated la-
ryngogram, and instants of glottal closure
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manently for some individual speakers, or it may miss
the beginning or end of a voiced segment by a short inter-
val — for instance, when the vocal folds, during the silent
phase of a plosive, continue to oscillate without produ-
cing a signal, or when voicing is resumed after a plosive
and the glottis does not completely close during the first
periods [10.72]. For such reasons, visual inspection of
the reference contour is necessary even with this con-
figuration; these checks, however, can be confined to
limited segments of the signal.

The instant of glottal closure is the point of max-
imum vocal-tract excitation, and it is justifiable to define
this instant as the beginning of a pitch period. In the
laryngogram this feature is well documented. As long
as the glottis is open, the conductance of the larynx is at
a minimum and the laryngogram is low and almost flat.
When the glottis closes, the laryngeal conductance goes
up and the laryngogram shows a steep upward slope.
The point of inflection during the steep rise of the laryn-
gogram, i.e., the instant of maximum change of the
laryngeal conductance, was found best suited to serve as
the reference point for this event.

10.5.2 Error Analysis

According to the classic study by Rabiner et al. [10.47],
which established the guidelines for the performance
evaluation of these algorithms for speech, PDAs and
VDA commit four types of errors:

1. Gross pitch-determination errors

2. Fine pitch-determination errors, i.e., measurement
inaccuracies

3. Voiced-to-unvoiced errors

4. Unvoiced-to-voiced errors

The latter two types represent errors of voicing
determination, whereas the former two refer to pitch
determination.

Gross pitch-determination errors are drastic fail-
ures of a particular method or algorithm to determine
pitch [10.47]. Usually an error is considered to be gross
when the deviation between the correct value of Ty or
Fy and the estimate of the PDA exceeds the maximum
rate of change a voice can produce without becoming
irregular (Rabiner et al. [10.47]: 1 ms; Hess and Inde-
frey [10.8], Mousset et al. [10.77]: 10%; Krubsack and
Niederjohn [10.78]: 0.25 octave). Typical gross errors
are confusions between Fj and the formant F1, which
usually falls into the measuring range. Other typical er-
rors are the so-called octave errors, i. e., taking Fp/2 or
2 Fy as the pitch estimate.
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On the other hand, error situations may also arise
from drastic failures of the voice to produce a regular
excitation pattern, which is not very frequent in well-
behaved speech but is nearly always the case when the
voice temporarily falls into creak or vocal fry. Hedelin
and Huber [10.18] distinguish between four main types
of irregularity of phonation that occur frequently in
running speech: (1) laryngealization (a temporal near-
closure of the glottis resulting in single, irregular glottal
pulses); (2) creak or vocal fry as a temporal voice register
(Fig. 10.2); (3) creaky voice, which is even less struc-
tured than creak; and (4) diplophonic excitation, which
shows an irregular pattern between adjacent periods but
a more-regular one between every second pitch period.
A further problem, which may sometimes become se-
vere, is the rate of change of fundamental frequency.
Xu and Sun [10.79], also referring to earlier studies,
give data for the maximum rate of change of Fp that
a human voice is able to produce without becoming ir-
regular. They found that a human voice can change its
Fop at a speed up to 100 semitones per second, and that
this limit is frequently reached during running speech.
One hundred semitones per second means one semi-
tone (6%) per 10 ms or two semitones (12%) per 20 ms.
According to Sreenivas [10.36], a 4% within-frame F
change already affects the salience of the estimate in the
same way as additive noise with 15dB SNR. As we see
from these data, a 10% change of Fy within a frame can
easily occur. If we interpret these data with respect to
individual pitch periods, we see that deep male voices
with long periods (10 ms and more) are more strongly
affected than female voices. Nonetheless, a deviation of
10% for Fy estimates between adjacent frames seems
reasonable as a lower bound for gross errors because
a larger change is beyond the capabilities of a human
voice.

Hence, gross errors arise mainly from three standard
situations.

® Adverse signal conditions: strong first formants,
rapid change of the vocal-tract position, band-
limited or noisy recordings. Good algorithms reduce
these errors to a great extent but cannot completely
avoid them [10.47].

® Insufficient algorithm performance, e.g., mismatch
of Fp and frame length [10.21]; temporary absence
of the key feature in some algorithms.

® Errors that arise from irregular excitation of voiced
signals. Since most algorithms perform some aver-
aging or regularity check, they can do nothing but
fail when the source becomes irregular.

When a PDA is equipped with an error-detecting
routine (the majority of cases, even if no postprocessor
is used), and when it detects that an individual esti-
mate may be wrong, it is usually not able to decide
reliably whether this situation is a true measurement er-
ror, which should be corrected or at least indicated, or
a signal irregularity, where the estimate may be correct
and should be preserved as it is. This inability of most
PDAs to distinguish between the different sources of er-
ror situations is one of the great unsolved problems in
pitch determination.

In the study by Rabiner et al. [10.47] gross errors
are simply counted, and the percentage of frames with
gross errors compared to the total number of (correctly
recognized) voiced frames is given as the gross error
rate. However, the perceptual importance of gross errors
depends on the deviation between the estimate and the
correct value as well as the energy of the frame [10.74,
80], from which a weighted gross error measure was
derived [10.67],

L ER)?
GPE_EZ(Ema)

k=1

pk) — Fo(k)
Fo(k)

, (10.21)

where p(k) is the incorrect estimate, E(k) is the en-
ergy of the frame, and Epax is the maximum energy
in the utterance. It appears useful to include both these
measures in an evaluation. The gross error count eval-
uates the PDA performance from a signal-processing
point of view, whereas GPE says something about their
perceptual relevance.

Measurement inaccuracies cause noisiness of the
obtained Tp or Fp contour. They are small deviations
from the correct value but can nevertheless be annoying
to the listener. Again there are three main causes.

® Inaccurate determination of the key feature. This
applies especially to algorithms that exploit the tem-
poral structure of the signal, for instance, when the
key feature is a principal maximum whose position
within a pitch period depends on the formant F1.

® Intrinsic measurement inaccuracies, such as the ones
introduced by sampling in digital systems.

® Errors from small fluctuations (jitter) of the voice,
which contribute to the perception of naturalness
and should thus be preserved.

Voicing errors are misclassifications of the VDA. We
have to distinguish between voiced-to-unvoiced errors,
in which a frame is classified as unvoiced although it is
in fact voiced, and unvoiced-to-voiced errors, with the
opposite misclassification. This scheme, as established
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in [10.47], does not take into account mixed excitation.
Voiced-to-unvoiced and unvoiced-to-voiced errors must
be regarded separately because they are perceptually
inequivalent [10.74], and the reasons for such errors
in an actual implementation may be different and even
contradictory. A number of VDASs even allow a tradeoff
between these two errors by adjusting their parameters.

10.5.3 Evaluation of PDAs
and VDAs- Some Results

Due to the absence of reliable criteria and systematic
guidelines, few publications on early PDAs included
a quantitative evaluation. As this situation has thor-
oughly changed, publications presenting new PDAs
increasingly also evaluate them. Mostly the newly de-
veloped PDA is evaluated against some well-known
PDAC(s) to show that the new approach is in some way
or for some kind of signals and conditions better or at
least equivalent to the known algorithms [10.46,52]. The
Keele database [10.81] has played a major role in this
respect. We will not discuss these evaluations here due
to lack of space; we rather deal with a couple of stud-
ies that did not aim at developing a new PDA but were
done to establish guidelines and show the state of the
art.

The classic studies by Rabiner et al. [10.47] and
McGonegal et al. [10.56] investigated seven PDAs (two
time domain, five short-term analysis) with respect to
pitch and voicing determination. The main results were:

® None of the PDAs investigated were error free, even
under good recording conditions. Each PDA had its
own favorite error; nevertheless, all error conditions
occurred for all of the PDAs.

® Almost any gross error was perceptible; in addi-
tion, unnatural noisiness of a pitch contour was well
perceived.

® The subjective evaluation did not match the prefer-
ence of the objective evaluation. In fact, none of the
objective criteria (number of gross errors, noisiness
of the pitch contour, or voicing errors) correlated
well with the subjective scale of preference.

Hence the question of which errors in pitch and voic-
ing determination are really annoying for the human
ear remained open. This issue was further pursued by
Viswanathan and Russell [10.74], who developed objec-
tive evaluation methods that are more closely correlated
to the subjective judgments. The individual error cate-
gories are weighted according to the consistency of the
error, i. e., the number of consecutive erroneous frames,

the momentary signal energy, the magnitude of the error,
and the special context.

Indefrey et al. [10.34], concentrating on the evalu-
ation of pitch determination errors only, investigated
several short-term PDAs in various configurations. They
showed that in many situations different short-term ana-
lysis PDAs behave in a complementary way so that
combining them in a multichannel PDA could lead to
better overall performance.

Indefrey et al. [10.34] also investigated the perfor-
mance of double-transform PDAs (cf. Sect. 10.2.2) with
additive Gaussian noise. Under this condition these al-
gorithms tend to break down at SNRs between 0 and
—6dB. It does not make a big difference whether the
SNR is defined globally (i. e., with a constant noise level
over a whole utterance) or segmentally (i.e., with the
same SNR for each frame), except that the slope of the
error curve at the breakdown point is larger for segmental
SNR. These results were confirmed in a number of other
studies [10.26, 46, 52]. Moreno and Fonollosa [10.52]
evaluated several autocorrelation PDAs (among them
their own) with several kinds of noise signals and found
that for the low-frequency-biased car noise the break-
down starts at an SNR of about 6 dB. The same holds
for babble noise [10.46].

De Cheveigné and Kawahara [10.27] investigated
eight PDAs whose software was available via the In-
ternet together with two of their own developments
([10.27], cf. Sect. 10.2.1; [10.82], based on an IF princi-
ple). Only gross errors were considered. The evaluation
was based upon an extensive database (almost two hours
of speech) with samples from three languages (En-
glish, French, and Japanese), including falsetto speech
from male speakers, and laryngograms as reference sig-
nals. Obviously aperiodic voiced signals were excluded.
Postprocessors and VDAs were disabled in the algo-
rithms as far as possible. The evaluation showed great
differences between algorithms and partly rather bad
performance (more than 10% gross errors for some of
them); the best one produced about 0.6% on average.
The evaluation also showed considerable dependency
of the error rate on the data so that the authors claim
the need for large databases when performing such
evaluations.

All these evaluations show that there is still no PDA
that works without errors, although they work better
now than 20 years ago. A gross error count of 0.6% is
regarded as excellent; nonetheless we must not forget
that, with the usual frame rate of 100 frames per sec-
ond, such an algorithm still produces a grossly wrong
estimate every two seconds of speech on average.
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10.5.4 Postprocessing and Pitch Tracking

A standard procedure for the reduction of pitch deter-
mination errors is smoothing. Smoothing is possible
when a pitch contour is given as a sequence of Ty
or Fy estimates and not as delimiters of individual
periods. The two standard smoothing methods are lin-
ear smoothing using some kind of low-pass filter and
(nonlinear) median smoothing [10.83]. Linear smooth-
ing reduces measurement inaccuracies but is unable to
cope with the effect of gross pitch determination er-
rors, which are reduced in size and distributed over
a larger amount of time but are not really removed.
Median smoothing, on the other hand, replaces each
pitch estimate with the middle value of an ordered
sequence of three, five, or seven adjacent estimates;
gross outliers are removed, but measurement inaccura-
cies remain unchanged. Rabiner et al. [10.83] combine
these methods and propose a two-step smoothing pro-
cedure with median smoothing coming first, followed
by a linear smoother. Linear smoothing, however, can
be dangerous since it may replace a gross error that has
been left in the median-smoothed contour by some esti-
mates lying between the correct value and the error and
so cause an inflection in the contour that is not due to
the signal.

Applying such a smoothing algorithm was shown
to substantially improve the (objective and subjective)
performance of any PDA to which it was applied [10.47,
56]. Specker [10.84] showed that postprocessing is able
to reduce the number of gross errors in a time-domain
PDA by almost an order of magnitude.

Secrest and Doddington [10.80] used dynamic pro-
gramming methods to find an optimal path through a list
of pitch estimate candidates with the smoothness of the
contour as the major criterion. They showed that this
technique performed better than any linear, nonlinear,
or median smoothing. This approach was further devel-
oped by Talkin [10.17]. Dynamic programming is well
suited to pitch tracking since it allows the basic extrac-
tor to give several pitch candidates so that we can deal

with more than only the best choice in each frame. Each
candidate is accompanied by a salience measure (usu-
ally the relative amplitude of the corresponding peak in
the representation from where the estimate is derived,
with respect to the reference point, e.g., the value of
the ACF at zero lag). In addition, Talkin’s PDA sup-
plies one candidate unvoiced per frame. Pitch tracking
is done by searching for an optimal path through the can-
didates from consecutive frames by minimizing a global
cost function. This global cost function is formed as
the sum of weighted local per-frame cost functions of
two types: (1) candidate costs, and (2) transition costs
between consecutive frames.

Candidate costs distinguish between pitch candi-
dates and the unvoiced candidate. The cost of a pitch
candidate equals one minus the salience measure of this
candidate. The cost of the unvoiced candidate is a con-
stant penalty plus the maximum salience measure within
the current frame.

The transition cost between consecutive frames also
depends on voicing. Between two unvoiced candidates
it is zero. Between two pitch candidates it depends on
the difference in frequency between the two estimates,
and special attention is given to octave jumps, which
are made costly but not totally impossible. The costs for
voiced-to-unvoiced transitions and vice versa include
a term with the reciprocal ltakura distance [10.85], an
energy term, and an extra penalty for this transition.
The rationale is that (1) these transitions are not too
frequent, (2) there are usually large spectral changes
between a voiced and an unvoiced frame, and (3) en-
ergy usually decreases at the end of a voiced part and
increases at its beginning.

There is no latency limit for the algorithm to find
the optimal path; in principle the search can extend over
a whole utterance. Talkin [10.17], however, reports that
it rarely takes more than 100 ms for all possible paths to
converge to a single point. The algorithm is part of the
well-known ESPS software package for speech analysis.
A comparable postprocessor operating on a probabilistic
approach is described in [10.86].

10.6 Applications in Speech and Music

Applications for PDAs in speech can be grouped into
four areas [10.1]:

1. Speech technology

2. Basic linguistic research, e.g., investigation of into-
nation

3. Education, such as teaching intonation to foreign-
language learners or to hard-of-hearing persons
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4. Clinical applications, such as the investigation of
voice quality

Some of these application areas have changed
greatly over the last two decades. The vocoder, which
was the main application for earlier speech technol-
ogy, has almost disappeared. Instead, investigating
prosodic events such as intonation, particularly in spon-
taneous speech, has become an important issue in
speech understanding systems [10.87], and many of
these systems now contain a prosody module. As it
is a long-term goal in speech technology to make
such devices operable from almost anywhere, a PDA
may even have to cope with signals from mobile
phones, which can be extremely bad and inconsis-
tent. Another new application area is data-driven speech
synthesis. Algorithms for time-domain pitch modifica-
tion, such as the well-known pitch-synchronous overlap
add (PSOLA) algorithm [10.57], require precise pitch
period determination to work properly, and with the
recent technology of nonuniform unit selection syn-
thesis large speech corpora have to be analyzed, yet
usually with excellent-quality signals free from phase
distortions.

What are the implications of this application shift
for the development of algorithms? PDAs for precise
pitch period determination of good-quality speech sig-
nals have been known for a long time; nonetheless the
main problem is exact synchronization with laryngeal
cycles, such as the instant of glottal closure. Such algo-
rithms, which originally come from clinical applications
where they were applied to isolated vowels, have been
extended to work for running speech as well.

In prosody recognition, intonation research and
speech technology now go together to a certain extent.
Prosody recognition needs intonation contours, not in-
dividual periods, and a certain lag between the running
time of the signal and the time of release of an esti-
mate is tolerable, in contrast to a vocoder where the
result must be available without delay. On the other
hand, prosody recognition must rely on automatic esti-
mates and cope with adverse conditions; above all, this
requires robustness.

The number of devices available for computer-aided
intonation teaching has been small [10.88]. However,
with the increased use of high-quality PDAs for into-
nation research, this will change. In the clinical area,
digital hearing prostheses have created a new application
area [10.63, 89]. We cannot discuss these applica-

tions here for reasons of space; the reader is referred
to [10.88, 89] for surveys.

Pitch determination of musical signals has three
main application areas, two of which are closely related:

1. Automatic notation of melodies and tunes, and au-
tomatic scoring

2. Information retrieval from audio data

3. Real-time capturing of tone frequencies of musical
instruments for musical instrument digital interface
(MIDI) applications

Automatic notation of melodies is a long-standing
problem. As early as 1979 Askenfelt [10.90] reported on
a project to automatically transcribe folk melodies that
had been collected in a large corpus. In this case most of
the melodies were one-voiced so that PDAs developed
for speech signals could be used.

This is not always the case for music, however, and
we must therefore count as a particular problem in music
that more than one note can be played at the same time,
and that PDAs for this application may have to cope
with multiple pitches and have to determine them all, if
possible.

Information retrieval from audio data (audio data
mining) also involves pitch determination of musical
signals. This application area is closely related to the
preceding one and also involves the problem of mul-
tiple pitches. An evolving application is the so-called
query by humming. Consider a person who listens to
an unknown tune in the radio, likes it, calls a call
center with a musical database, hums or sings the
melody, and wants the title of the song retrieved. This
is a difficult task with pitch determination being a part
thereof.

Transcription of a musical melody into musical notes
is much more than mere pitch determination. One has
to recover the rhythm from the timing of the melody,
and one has to take care of the timing, i.e., when
one note ends and another one starts. These questions,
which are partly still open, go beyond the scope of
pitch determination and will not be further discussed
here.

Real-time capturing for MIDI is closely related to
the old vocoder application in speech. A PDA is always
desirable if a MIDI synthesizer is to be driven from an
instrument other than a keyboard, e.g., from an electric
guitar. Here the main problem is that the response must
be almost instantaneous; a delay of even 50 ms could be
detrimental for a live performance.
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10.7 Some New Challenges and Developments

This section will concentrate on three problems:

1. Detecting the instant of glottal closure for applica-
tions in speech synthesis

2. Multiple pitch detection, particularly in mu-
sic [10.93]

3. Instantaneousness versus reliability

10.7.1 Detecting the Instant
of Glottal Closure

If a PDA in speech is required to be very accurate, it is
optimal to synchronize it with the instants of glottal clo-
sure. A cascaded PDA for this purpose was developed
by Hess [10.92] based on a previous algorithm by Cheng
and O’Shaughnessy [10.91]. It is intended for work in
time-domain speech synthesis and determines the glot-
tal closure instant (GCI) from undistorted signals. The
first part of the cascade is a short-term PDA applying
a double-spectral-transform principle [10.34]. The sec-
ond part uses the estimate of the first PDA to restrict its
momentary Fy range to an octave around this value.

According to Mousset et al. [10.77] a GCI detector
consists of four steps:

1. Acoustic speech signal pre-emphasis (optional)

2. A transformation aiming to produce peaks at GCIs

3. Postprocessing aiming to increase contrast in the
resulting signal (optional)

4. A peak picking operation

The algorithm described here follows this scheme.

In the source-filter approach the speech signal is the
response of the supraglottal system to the pulse train
generated by the source, and a pitch period can be re-
garded as the beginning of the impulse response of the
vocal tract. If we now compute the correlation function
c(n) between the speech signal s(n) and the beginning
of the pertinent impulse response /(n) of the vocal tract,

c(n) = Zs(n—l—k)h(k) (10.22)
k

there will be maxima at those instants » that correspond
to an GCI. The impulse response h(n) is estimated via
linear prediction. The main peaks of ¢(n) synchronize
well with the individual GClIs. Strong formants, how-
ever, also show up in c¢(n), and further processing is
required. Cheng and O’Shaughnessy suggested that one
should calculate the envelope of c¢(n), send it through
a high-pass filter and a half-way rectifier to enhance the

leading amplitudes at the beginning of each pitch period,
and multiply c(n) by the resulting waveform d(n). The
envelope

e(n) =/ [e(m)]* + [eu(m)]*, (10.23)

where cy(n) is the Hilbert transform of c¢(n), is calcu-
lated using a digital Hilbert filter. Figure 10.11 shows an
example.

This approach has the problem known from all PDAs
that apply some sort of inverse filtering (cf. Sect. 10.3.3)
that it fails systematically when the formant F'1 coin-
cides with Fy and the signal becomes almost sinusoidal.
Then e(n) becomes a constant, and d(n) is either zero or
fluctuates at random around zero instead of displaying
the envelope of a damped formant oscillation. A way
out of this problem is to partly bridge the high-pass
filter so that the constant component of the envelope
is not completely removed. If the short-term analysis
enters a reliable estimate of Tp, rather stringent cor-
rection routines can remove the unwanted peaks in
c(n) and at the same time preserve correct processing.
The exact position of the GCIs is derived from c(n)
anyway.

Group delay methods have also been proposed for
GCI determination [10.94,95]. Group delay is defined
as the derivative of the phase spectrum with respect to

Fig.10.11a—e Determining the instant of glottal closure
via a maximum-likelihood criterion [10.91, 92]: example
of performance. (a) Signal frame (45ms); (b) impulse
response i(n) of the vocal tract, estimated by linear predic-
tion; (c) correlation function c(n); (d) envelope e(n) (dotted
line) and high-pass filtered envelope; (e) product of c¢(n)
and the filtered envelope
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frequency and can be calculated [10.94] via the DFT:
(m) = Re [ 5
gm)=Re | — ) ;
¢ S(m)
S(m)=DFT{s(n)} ;

(10.24)

S(m) = DFT{ns(n)}

If a frame contains a single impulse at position k = ny,
this will produce a constant group delay of ng for all
frequency indexes m. If there is additional noise in the
frame, one can expect that at least the average group
delay (averaged over all frequencies) equals ng. If we
now compute the average group delay for each sample
of the time signal s(n), it will show a negative-going
zero crossing (with a slope of —1) when the impulse is
at the starting position of the frame. GCIs mark non-
stationarities in the signal and show up as impulse-like
structures, for instance, in an LP residual. This makes
the method useful for GCI detection, and there are al-
gorithmic shortcuts that allow the average group delay
to be computed without needing two DFTs per sam-
ple. Brookes et al. [10.95] investigate several weighted
measures for the average group delay and find that
these measures are quite robust against additive noise;
however, they critically depend on the length of the time-
domain window used for group delay measurement. If
there is no impulse in the frame, the average group de-
lay will vary around zero; if there is more than one
impulse, the results are unpredictable. In a cascaded im-
plementation using an auxiliary short-term PDA, when
an estimate for Ty is available, it is straightforward to
adjust the window length according to this estimate.

Another method, rather simple to implement, is
based on singular value decomposition. Ma et al. [10.96]
show that the Frobenius norm ||S||r of an N x(K +1)
matrix S, being

[ISIlF = (10.25)

S=(u; 1<n<N; 1<k<K+1)

equals the product of the squared singular values of the
singular value decomposition (SVD) of S,

K+1

ISIE=| > of.
k=1

SVD is known to model linear dependencies of the rows
and columns of the associated matrices. GCIs provide
new information and cannot be covered by linear mod-
eling. Hence, singular values tend to be large when the

(10.26)

pertinent speech data matrix representing a signal frame,

s(0)
s(1)

s(K)
s(K+1)

s(K—1)
s(K)

S(K+N—-1) sS(K+N-=2) --- s(N—-1)

contains a glottal impulse. (We assume N > K and full
column rank of the matrix S [10.96].) The singular values
become largest when the glottal impulse is found in the
first row of S. So the Frobenius norm gives an algorith-
mic shortcut to the costly SVD of S which would have
to be performed otherwise. This algorithm had a couple
of forerunners that are well described in [10.96].

Other methods to determine the GCI involve neu-
ral networks with appropriate training [10.63], wavelet
functions [10.97], simplified inverse filtering [10.77],
nonlinear filtering [10.98] or statistical evaluation of the
nonstationarity of the signal at the GCI [10.99]. Mous-
set et al. [10.77] evaluated several of these methods
using the Keele database for PDA evaluation [10.81].
They used the analysis scheme proposed by Rabiner
et al. [10.47] and extended it by two error classes suit-
able for any time-domain PDA: (1) insertion of a GCI
marker where no GCI is present, and (2) miss (deletion)
of a GCI that should have been detected. Their results
show that the methods evaluated are about equivalent
but show some sensitivity to the length of the respective
time windows and to the speakers.

10.7.2 Multiple Pitch Determination

Simultaneous tones with different frequencies require
some frequency-domain processing since, in this do-
main, peaks resulting from different tones show up at
their respective frequencies. The same holds for the lag
domain of a double-spectral-transform PDA when the
nonlinear distortion in the frequency is of local nature,
such as in computing a cepstrum or an autocorrelation
function. Hence PDAs that explicitly or implicitly in-
volve a Fourier transform will have this property, as was
shown in [10.33] using simultaneous speech from two
talkers as well as musical signals. Although not expli-
citly stated in the literature, active modeling would also
allow multipitch tracking.

Such PDAs have been used in several configura-
tions for speaker separation. The usual procedure is
that the PDA determines pitch for one of the speak-
ers; then a speech enhancement procedure (e.g., spectral
subtraction) is applied to remove this speaker from the
signal. The PDA then determines the pitch of the sec-



Pitch and Voicing Determination of Speech

10.7 Some New Challenges and Developments

ond speaker. The problem with this configuration is the
correct assignment of the signal to the two speakers,
particular when the signal from a speaker is unvoiced.
De Cheveigné [10.100] describes a PDA designed for
this purpose that estimates two pitches simultaneously
using a cascaded comb filter and a two-dimensional
AMDF estimation procedure.

Multiple pitch determination, particularly for mu-
sic, is a wide field that would justify a chapter of
its own. In this section we can give only a small se-
lection of examples. For more-comprehensive surveys
of the activities in this field, the reader is referred to
De Cheveigné [10.100] or Klapuri [10.101].

Goto’s algorithm [10.102] for music signals fo-
cuses on extracting leading voices from a polyphonic
signal, in this case a melody line and a bass line
which occupy different and non-overlapping Fj ranges
(32-260 Hz versus 260—4100 Hz). The PDA works in
the frequency domain. It basically estimates the fun-
damental frequency of the most predominant harmonic
structure corresponding to the melody or bass line. It
simultaneously takes into account all possibilities for
Fp and treats the input spectrum as if it contains all
possible harmonic structures with different weights (am-
plitudes). It regards a probability density function (PDF)
of the input frequency components as a weighted mix-
ture of harmonic-structure tone models (represented by
PDFs) of all possible pitches and simultaneously esti-
mates both their weights corresponding to the relative
dominance of every possible harmonic structure and
the shape of the tone models by maximum a-posteriori
probability (MAP) estimation regarding their prior dis-
tribution. It then considers the maximum-weight model
as the most predominant harmonic structure and obtains
its fundamental frequency. A multiple-agent architecture
evaluates the temporal continuity of the estimates.

The PDA uses a logarithmic frequency scale corre-
sponding to the musical notation unit cent,

S = 12001og, LHZ ,

cent 440.212 73
where 1 cent equals 1/100 of a tempered semitone so that
an octave consists of 1200 cents. Each tone model corre-
sponds to a trial fundamental frequency p and provides
a harmonic structure; the individual harmonics are mod-
eled as weighted one-dimensional Gaussian distribution.
The weights of all models are estimated simultaneously,
where the same frequency can be shared by different
harmonics of different tone models. The tone model
with maximum weight yields the estimate for the pre-
dominant Fp. A multiple-agent architecture performs

(10.27)

a temporal track across frames and gives the most sta-
ble trajectory as the final result. It consists of a salience
detector that picks promising Fy candidates, and a num-
ber of agents that interact to allocate the salient peaks
among themselves according to peak closeness. Each
agent has its own penalty record, and it gets a penalty
when no suitable peak can momentarily be allocated to
it. If a penalty threshold is exceeded, the agent is termi-
nated. If a peak cannot be assigned to a running agent,
a new agent is created. The final output is determined
on the basis of which agent has the highest reliability
and greatest total power along the trajectory of the peak
it is tracking. Detection rates for melody and bass are
reported as 80-90% and depend on the respective tune
being processed.

The PDA by Tolonen and Karjalainen [10.103] uses
a perception-oriented double-transform PDA based on
the unitary model of pitch perception [10.6]. The original
model in [10.6] employs a large number of critical-band
filters (spaced at much less than a critical band). In each
channel the signal is half-wave rectified and low-pass fil-
tered, and its short-term ACF is determined. The ACFs
of all channels are then added to give an estimate of
pitch. In Tolonen and Karjalainen’s PDA the signal is
first filtered by an optional pre-whitening filter and then
split into only two subbands with a cutoff frequency of
1000 Hz. The high-frequency channel is then rectified
and smoothed. The lag-domain representations obtained
by the double-spectral-transform principle for each sub-
band are added up to the so-called summary ACF. This
function is then enhanced. It is first clipped from under
so that only positive values are retained. Then it is time
stretched by a factor of 2, 3, etc. and subtracted from the
original summary ACF, and again only positive values
are retained. From this enhanced summary ACF signif-
icant maxima are sought. For musical sound analysis,
relatively long windows (up to 180 ms) are employed.
The algorithm works well when the simultaneous tones
in the input signal do not differ too much in amplitude.
The method is limited to fundamental frequencies below
1000Hz [10.101].

Klapuri [10.101], besides giving a comprehensive
survey of PDAs for multipitch determination, devel-
oped two PDAs for this task. One of these is based
on the unitary model of pitch perception [10.6], with
some modification that makes the PDA more reliable
and computationally less costly. The other is based on
an iterative frequency-domain technique. The predomi-
nant pitch is detected, then the corresponding harmonic
structure is removed from the spectrum, and the pro-
cedure is repeated for the next predominant pitch. The
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iteration is stopped when the energy of the harmonic
structure drops below a given threshold.

Determination of the predominant harmonic struc-
ture follows a perception-oriented approach that
resembles Terhardt’s virtual pitch model [10.4] in that it
is tolerant toward inharmonicity. The spectrum is sub-
divided into 18 subbands with overlapping triangular
transfer functions which add to unity for adjacent sub-
bands. In each subband salience estimates are made for
each trial fundamental frequency p in the measuring
range,

(in subband k)

2

i

L(p, k) =max | c(m, i) S(m+ip) | ,
m

(10.28)

where m stands for a possible (small) offset due to in-
harmonicity, and c specifies a weighting function that
depends on m and the harmonic number i. The salience
estimates are then added over all subbands with the ad-
ditional possibility of taking into account shift of higher
harmonics toward higher frequencies, as it sometimes
occurs with musical instruments. One of the trial fre-
quencies p emerges as predominant, and the pertinent
harmonic amplitude spectrum is smoothed. To remove
the tone, the smoothed harmonic structure is subtracted
from the overall spectrum.

Special attention is given to the problem of several
tones with harmonic frequency ratios. The smoothing
procedure helps to solve this problem. Think of two
tones with a frequency ratio of 1:3. All the harmonics
of the higher tone coincide with harmonics of the lower
one, but we can expect that every third harmonic has an
outstanding amplitude. It is likely that the lower tone will
be detected first. The smoothing procedure equalizes
these amplitude fluctuations so that the higher tone will
be preserved when the lower one is removed.

The PDA by Kameoka et al. [10.104] performs
simultaneous multipitch extraction in the frequency do-
main based on a statistical model given by

(0} = {uk), wk), olk=1,...,K}. (10.29)

The model consists of a set of K harmonic structures.
Each of these is described by a tied Gaussian mixture
(which corresponds to Goto’s PDA [10.102], see above).
Its vector u of mean values stands for the frequencies
of the partials and has only one degree of freedom, i. e.,
its fundamental frequency. The weight w(k) stands for
the predominance of the k-th harmonic structure; the
variance is kept constant for the sake of simplicity. The
model is initialized, and the parameters are iteratively

improved using a log likelihood criterion and the ex-
pectation maximization algorithm [10.105]. As the true
number of simultaneous tones in the signal is unknown,
the model order K is initialized too high and becomes
part of the optimization. Akaike’s information criterion
(AIC), which specifies a tradeoff between the order of
a model and its accuracy,

AIC = 2 - (number of free parameters)

— 2+ (maximum of log likelihood)  (10.30)

is used to determine the optimal value of K. A harmonic
structure is abandoned when its weight becomes low
or when it is placed between two other structures that
move toward each other and have higher weights. If
a harmonic structure is abandoned, the number of free
parameters decreases by two (frequency and weight),
and the likelihood gets worse. Whenever a harmonic
structure is to be abandoned, AIC is computed. The
iteration is stopped when AIC has reached a minimum.

The role of gross pitch determination errors in this
context differs from that in speech. In speech we have
the special problem of octave errors (cf. Sect. 10.5.2)
which are to be strictly avoided. In polyphonic mu-
sic, on the other hand, two instruments frequently play
an octave apart from each other, and should then both
be detected. Klapuri’s smoothing procedure [10.101]
explicitly takes into account two tones at any harmonic
interval. Nevertheless it is reported [10.101,104] that the
PDAs have problems when notes are played at certain
musical intervals, among them the octave.

10.7.3 Instantaneousness Versus Reliability

It is always desirable to get the estimate from a PDA in-
stantaneously. Processing time depends on two factors:
(1) computational complexity of the PDA and speed of
the device running it, and (2) latency, i. e., the amount of
signal required to get a reliable estimate plus comput-
ing time. A PDA runs in real time if the processing time
required is less than the elapsed time, say, between two
successive frames. As today’s computers are able to run
even complex PDAs in real time, we can put aside the
first issue. With the amount of signal required, however,
there may be a hidden problem. An ordinary short-term
PDA needs (at least) two complete pitch periods to de-
tect periodicity in an orderly manner. If the spectral
transform is done in one step for the whole range of
Fo, latency will be twice the longest possible period in
the window. For speech, with Fp ranging from 50 Hz for
a deep male voice up to, say, 1000 Hz for a child in spon-
taneous speech, this means a lag of at least 40 ms from
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Computation| Estimate
starts time is available
Latency

Fig.10.12 The latency problem. Latency is defined as the
elapsed time from the beginning of the frame until the
estimate is available

the beginning of the window until we obtain an estimate,
not including processing time. In vocoder telephony this
may just be tolerable, but this will be a problem for on-
line capturing of music in a MIDI application. Of course
the latency will go down when the lower end of the
frequency range gets higher. One period of the low-
est tone of an ordinary guitar lasts about 12 ms, while
that of a violin lasts about 5 ms. However, if the PDA
applies postprocessing, for instance, pitch contour track-
ing by dynamic programming methods [10.17], latencies
will go up drastically. It goes without saying that such
methods cannot be applied when tough time constraints
are given.

How can this problem be solved? If reliability re-
quires a short-term analysis PDA, we must speed it up.
If we can assume that the signal is nearly sinusoidal, we
can apply time-domain methods, which may be more
instantaneous.

Several attempts have been made to speed up short-
term analysis PDAs. It has been known for a long time
that distance functions, such as the AMDF, can work
with short frames. Since no Fourier transform is in-

10.8 Concluding Remarks

The problem of pitch determination and fundamen-
tal frequency tracking is long-standing, known, and
yet unsolved in a general sense. However, for most
applications, algorithms that yield good and accept-
able solutions have been developed. Applications in
speech and music have moved away from the vocoder
toward prosody recognition, automatic melody detec-

volved, the function can be computed synchronously as
time runs, and so we may be able to obtain estimates of
Tp in little more than the duration of the period to be
measured. Estimates of short periods will thus be avail-
able sooner than those of long ones. Such nonstationary
approaches do not only exist for distance functions.
For instance, Talkin’s PDA ([10.17]; Sect. 10.2.1) uses
a nonstationary autocorrelation function. Yoo and Fu-
Jjinaga [10.106] performed some practical experiments
with several hardware and software PDAs for MIDI cap-
ture on a violin and found latencies of 15-90 ms. For
a MIDI application this may already be unacceptable.

If the signal is near-sinusoidal, time-domain pitch
determination can be very fast. The lag between two con-
secutive zero crossings or between a maximum and the
consecutive minimum of a sinusoid equals half a period,
and only a quarter of a period elapses between an ex-
treme (maximum or minimum) and the adjacent zero
crossing. Even faster methods needing fewer signal sam-
ples can be conceived, leading to a kind of anytime
algorithm that can yield a rather imprecise estimate al-
most instantaneously but is able to refine this estimate
when given more time. (Remember, however, that in
MIDI applications a tone command can be given only
once; if it is in error, the wrong tone will come out.)
In this case the problem is: how can we obtain a signal
close to a sinusoid? In speech this is unrealistic due to
the transfer function of the vocal tract, where lip radia-
tion introduces a zero at f = 0O that strongly attenuates
the first harmonic. In music, however, such an approach
can be of interest when an instrument yields a signal that
is almost sinusoidal, or when the capturing microphone
or sensor is placed on the instrument in such a way that
it performs as a low-pass filter.

tion, acoustic data retrieval, computational auditory
scene analysis, and high-precision analysis of speech
synthesis corpora. New challenges for the develop-
ment of PDAs, among others, include high-precision
pitch period determination, processing of signals with
multiple pitches, and PDAs with very short laten-
cies.
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