Review	FFT	Overlap-Add	Example

Lecture 25: Overlap-Add

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	FFT	Overlap-Add	Example

Review	FFT	Overlap-Add	Example
●○	000000	00000	00
Outline			

2 Fast Fourier Transform

3 Overlap-Add



Review	FFT	Overlap-Add	Example
00	000000	00000	00
Review: Circular	convolution		

Multiplying the DFT means **circular convolution** of the time-domain signals:

$$y[n] = h[n] \circledast x[n] \leftrightarrow Y[k] = H[k]X[k],$$

Circular convolution $(h[n] \otimes x[n])$ is defined like this:

$$h[n] \circledast x[n] = \sum_{m=0}^{N-1} x[m]h[((n-m))_N] = \sum_{m=0}^{N-1} h[m]x[((n-m))_N]$$

Circular convolution is the same as linear convolution if and only if $N \ge L + M - 1$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Review	FFT	Overlap-Add	Example
00	●00000	00000	00
Outline			

Convolution is an $O\{N^2\}$ operation: each of the N samples of y[n] is created by adding up N samples of x[m]h[n-m]:

$$y[n] = \sum_{m} x[m]h[n-m]$$

The way we've learned it so far, the DFT is **also** an $O\{N^2\}$ operation: each of the *N* samples of X[k] is created by adding up *N* samples of $x[n]e^{j\omega_k n}$:

$$X[k] = \sum_{n} x[n] e^{-j\frac{2\pi kn}{N}}$$

However...

Review	FFT	Overlap-Add	Example
00	00●000	00000	00
The Fast Fourie	er Transform		

- The fast Fourier transform (FFT) is a clever divide-and-conquer algorithm that computes all of the N samples of X[k], from x[n], in only N log₂ N multiplications.
- It does this by computing all N of the X[k], all at once.
- Multiplications $(x[n] \times w_{k,n})$, for some coefficient $w_{k,n}$ are grouped together, across different groups of k and n.
- On average, each of the N samples of X[k] can be computed using only log₂ N multiplications, for a total complexity of N log₂ N.

Consider filtering N = 1024 samples of audio (about 1/40 second) with a filter, h[n], that is 1024 samples long.

- Time-domain convolution requires $1024 \times 1024 \approx 1,000,000$ multiplications. If a GPU does 40 billion multiplications/second, then it will take an hour of GPU time to apply this operation to a 1000-hour audio database.
- FFT requires 1024 × log₂ 1024 ≈ 10,000 multiplications. If a GPU does 40 billion multiplications/second, then it will take 36 seconds of GPU time to apply this operation to a 1000-hour audio database.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Review	FFT	Overlap-Add	Example
00	○00000	00000	00
How is it used?			

Suppose we have a 1025-sample h[n], and we want to filter a one-hour audio (144,000,000 samples). Divide the audio into frames, x[n], of length M = 1024, zero-pad to N = L + M - 1 = 2048, and take their FFTs.

- $H[k] = FFT\{h[n]\}$: total cost is trivial, because we only need to do this once.
- $X[k] = FFT\{x[n]\}$: total cost is $N \log N$ per M samples.
- Y[k] = X[k]H[k]: total cost is N multiplications per M samples.

• $y[n] = FFT^{-1}{Y[k]}$: total cost is $N \log N$ per M samples.

Grand total: $N \times (2 \log_2 N + 1) = 2048 \times 23 = 47104$ multiplications per 1024 audio samples, or 46 multiplications per sample.

Review	FFT	Overlap-Add	Example
00	00000●	00000	00
How do w	e recombine the y	n]?	

- The main topic of today's lecture: how do we recombine the y[n]?
- Remember: each frame of x[n] was 1024 samples, but after zero-padding and convolution, each frame of y[n] is 2048 samples.

• How do we recombine them?

Review	FFT	Overlap-Add	Example
00	000000	●○○○○	00
Outline			

2 Fast Fourier Transform

3 Overlap-Add

Review	FFT	Overlap-Add	Example
		0000	

Let's look more closely at what convolution is. Each sample of x[n] generates an impulse response. Those impulse responses are added together to make the output.

Review	FFT	Overlap-Add	Example
		00000	

First two lines show the first two frames (input on left, output on right). Last line shows the total input (left) and output (right).

・ロト・西ト・山田・山田・山口・

Review	FFT	Overlap-Add	Example
00	000000	○○○●○	00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Overlap-Add Algorithm

- Divide x[n] into frames
- Generate the output from each frame
- Overlap the outputs, and add them together

Review	FFT	Overlap-Add	Example		
00	000000	○OOO●	00		
The Overlap-Add Algorithm					

• Divide x[n] into frames (w[n] is a length-M rectangle).

 $x_t[n] = x[n + tM]w[n]$ $X_t[k] = FFT\{x_t[n]\}$

Generate the output from each frame

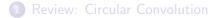
 $Y_t[k] = X_t[k]H[k]$ $y_t[n] = FFT^{-1}\{y_t[n]\}$

Overlap the outputs, and add them together

$$y[n] = \sum_{t} y_t[n - tM]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Review	FFT	Overlap-Add	Example
00	000000	00000	●○
Outline			



2 Fast Fourier Transform

3 Overlap-Add

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Review	FFT	Overlap-Add	Example		
00	000000	00000	⊙●		
Written Example					

- Suppose you have a billion samples of audio (about 6 hours' worth), and you want to convolve it with a 1025-sample lowpass filter. How many multiplications are required to do this using time-domain convolution? How many using overlap-add?
- Suppose that the audio is periodic, with a period of 1024 samples. Each period is 600 ones, followed by 424 zeros. Suppose that the filter is

$$h[n] = a^n, \ 0 \le n \le 1024$$

Use overlap-add (but with convolutions, not FFT) to find the first 2048 samples of y[n]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00