Lecture 17: Ideal Filters

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2022
1. Review: DTFT
2. Ideal Lowpass Filter
3. Ideal Highpass Filter
4. Ideal Bandpass Filter
5. Summary
6. Written Example
Outline

1. Review: DTFT
2. Ideal Lowpass Filter
3. Ideal Highpass Filter
4. Ideal Bandpass Filter
5. Summary
6. Written Example
The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}$$
Properties of the DTFT

Properties worth knowing include:

1. **Periodicity:** \(X(\omega + 2\pi) = X(\omega) \)
2. **Linearity:**
 \[
 z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)
 \]
3. **Time Shift:** \(x[n - n_0] \leftrightarrow e^{-j\omega n_0}X(\omega) \)
4. **Frequency Shift:** \(e^{j\omega_0 n}x[n] \leftrightarrow X(\omega - \omega_0) \)
5. **Filtering is Convolution:**
 \[
 y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)
 \]
Outline

1. Review: DTFT
2. Ideal Lowpass Filter
3. Ideal Highpass Filter
4. Ideal Bandpass Filter
5. Summary
6. Written Example
What is “Ideal”?

The definition of “ideal” depends on your application. Let’s start with the task of lowpass filtering. Let’s define an ideal lowpass filter, \(Y(\omega) = H_{LP}(\omega)X(\omega) \), as follows:

\[
Y(\omega) = \begin{cases}
 X(\omega) & |\omega| \leq \omega_c, \\
 0 & \text{otherwise},
\end{cases}
\]

where \(\omega_c \) is some cutoff frequency that we choose. For example, to de-noise a speech signal we might choose \(\omega_c = 2\pi 2400 / F_s \), because most speech energy is below 2400Hz. This definition gives:

\[
H_{LP}(\omega) = \begin{cases}
 1 & |\omega| \leq \omega_c \\
 0 & \text{otherwise}
\end{cases}
\]
Ideal Lowpass Filter

$|X(\omega)|$

$H_{LP}(\omega)$

$|Y(\omega)| = H_{LP}(\omega)|X(\omega)|$
How can we implement an ideal LPF?

1. Use `np.fft.fft` to find $X[k]$, set $Y[k] = X[k]$ only for $\frac{2\pi k}{N} < \omega_c$, then use `np.fft.ifft` to convert back into the time domain?
 - It sounds easy, but...
 - `np.fft.fft` is finite length, whereas the DTFT is infinite length. Truncation to finite length causes artifacts.

2. Use pencil and paper to inverse DTFT $H_{LP}(\omega)$ to $h_{LP}[n]$, then use `np.convolve` to convolve $h_{LP}[n]$ with $x[n]$.
 - It sounds more difficult.
 - But actually, we only need to find $h_{LP}[n]$ once, and then we’ll be able to use the same formula for ever afterward.
 - This method turns out to be both easier and more effective in practice.
Inverse DTFT of $H_{LP}(\omega)$

The ideal LPF is

$$H_{LP}(\omega) = \begin{cases} 1 & |\omega| \leq \omega_c \\ 0 & \text{otherwise} \end{cases}$$

The inverse DTFT is

$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(\omega)e^{j\omega n} d\omega$$

Combining those two equations gives

$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$
Solving the integral

The ideal LPF is

\[h_{LP}[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega \]

\[= \frac{1}{2\pi} \left(\frac{1}{jn} \right) \left[e^{j\omega n} \right]_{-\omega_c}^{\omega_c} \]

\[= \frac{1}{2\pi} \left(\frac{1}{jn} \right) (2j \sin(\omega_c n)) \]

\[= \frac{\sin(\omega_c n)}{\pi n} \]

\[= \left(\frac{\omega_c}{\pi} \right) \text{sinc}(\omega_c n) \]
\[h_{LP}[n] = \frac{\sin(\omega_c n)}{\pi n} \]

- \(\frac{\sin(\omega_c n)}{\pi n} \) is undefined when \(n = 0 \)
- \(\lim_{n \to 0} \frac{\sin(\omega_c n)}{\pi n} = \frac{\omega_c}{\pi} \)
- So let’s define \(h_{LP}[0] = \frac{\omega_c}{\pi} \).
\[h_{LP}[n] = \frac{\omega_c}{\pi} \text{sinc}(\omega_c n) \]
Outline

1. Review: DTFT
2. Ideal Lowpass Filter
3. Ideal Highpass Filter
4. Ideal Bandpass Filter
5. Summary
6. Written Example
Ideal Highpass Filter

An ideal high-pass filter passes all frequencies above ω_c:

$$H_{HP}(\omega) = \begin{cases} 1 & |\omega| > \omega_c \\ 0 & \text{otherwise} \end{cases}$$
Ideal Highpass Filter

...except for one problem: aliasing.
The highest frequency, in discrete time, is $\omega = \pi$. Frequencies that seem higher, like $\omega = 1.1\pi$, are actually lower. This phenomenon is called “aliasing.”
Ideal Highpass Filter

Here’s how an ideal HPF looks if we only plot from $-\pi \leq \omega \leq \pi$:
Here's how an ideal HPF looks if we plot from $-2\pi \leq \omega \leq 2\pi$:
Ideal Highpass Filter

Here’s how an ideal HPF looks if we plot from $-3\pi \leq \omega \leq 3\pi$:
Redefining "Lowpass" and "Highpass"

Let’s redefine “lowpass” and “highpass.” The ideal LPF is

$$H_{LP}(\omega) = \begin{cases} 1 & |\omega| \leq \omega_c, \\ 0 & \omega_c < |\omega| \leq \pi. \end{cases}$$

The ideal HPF is

$$H_{HP}(\omega) = \begin{cases} 0 & |\omega| < \omega_c, \\ 1 & \omega_c \leq |\omega| \leq \pi. \end{cases}$$

Both of them are periodic with period 2π.
The easiest way to find $h_{HP}[n]$ is to use linearity:

$$H_{HP}(\omega) = 1 - H_{LP}(\omega)$$

Therefore:

$$h_{HP}[n] = \delta[n] - h_{LP}[n]$$

$$= \delta[n] - \frac{\omega_c}{\pi} \text{sinc}(\omega_c n)$$
\[h_{HP}[n] = \delta[n] - \frac{\omega_c}{\pi} \text{sinc}(\omega_c n) \]
Comparing highpass and lowpass filters

$H_{LP}(\omega)$, cutoff=$\pi/4$

$H_{LP}(\omega)$, cutoff=$\pi/2$

$H_{LP}(\omega)$, cutoff=$3\pi/4$

$h_{LP}[n]$, cutoff=$\pi/4$

$h_{LP}[n]$, cutoff=$\pi/2$

$h_{LP}[n]$, cutoff=$3\pi/4$
$$h_{HP}[n] = \delta[n] - \frac{\omega_c}{\pi} \text{sinc}(\omega_c n)$$
Outline

1. Review: DTFT
2. Ideal Lowpass Filter
3. Ideal Highpass Filter
4. Ideal Bandpass Filter
5. Summary
6. Written Example
Ideal Bandpass Filter

An ideal band-pass filter passes all frequencies between ω_1 and ω_2:

$$H_{BP}(\omega) = \begin{cases}
1 & \omega_1 \leq |\omega| \leq \omega_2 \\
0 & \text{otherwise}
\end{cases}$$

(and, of course, it’s also periodic with period 2π).
The easiest way to find \(h_{BP}[n] \) is to use linearity:

\[
H_{BP}(\omega) = H_{LP,\omega_2}(\omega) - H_{LP,\omega_1}(\omega)
\]

Therefore:

\[
h_{BP}[n] = \frac{\omega_2}{\pi} \text{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \text{sinc}(\omega_1 n)
\]
$$h_{BP}[n] = \frac{\omega_2}{\pi} \text{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \text{sinc}(\omega_1 n)$$
$$h_{BP}[n] = \frac{\omega_2}{\pi} \text{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \text{sinc}(\omega_1 n)$$
Outline

1. Review: DTFT
2. Ideal Lowpass Filter
3. Ideal Highpass Filter
4. Ideal Bandpass Filter
5. Summary
6. Written Example
Summary: Ideal Filters

- Ideal Lowpass Filter:
 \[H_{LP}(\omega) = \begin{cases}
 1 & |\omega| \leq \omega_c, \\
 0 & \omega_c < |\omega| \leq \pi.
\end{cases} \quad \leftrightarrow \quad h_{LP}[m] = \frac{\omega_c}{\pi} \text{sinc}(\omega_c n) \]

- Ideal Highpass Filter:
 \[H_{HP}(\omega) = 1 - H_{LP}(\omega) \quad \leftrightarrow \quad h_{HP}[n] = \delta[n] - \frac{\omega_c}{\pi} \text{sinc}(\omega_c n) \]

- Ideal Bandpass Filter:
 \[H_{BP}(\omega) = H_{LP,\omega_2}(\omega) - H_{LP,\omega_1}(\omega) \]
 \[\leftrightarrow h_{BP}[n] = \frac{\omega_2}{\pi} \text{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \text{sinc}(\omega_1 n) \]
Outline

1. Review: DTFT
2. Ideal Lowpass Filter
3. Ideal Highpass Filter
4. Ideal Bandpass Filter
5. Summary
6. Written Example
Suppose you have an image with a sharp boundary, between black and white, at the location $n = 0$. This is well modeled by setting $x[n]$ equal to the unit step function:

$$x[n] = \begin{cases} 1 & n \geq 0 \\ 0 & n < 0 \end{cases}$$

Use graphical convolution to convolve $x[n]$ with an ideal LPF. You don’t need to find the exact values of $y[n]$, but sketch things like: how wide is the ramp between light and dark? How frequent are the ripples on either side of the ramp?