Lecture 11: Linearity and Shift-Invariance

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2022
1. Systems
2. Linearity
3. Shift Invariance
4. Written Example
5. Summary
Outline

1. Systems
2. Linearity
3. Shift Invariance
4. Written Example
5. Summary
A **system** is anything that takes one signal as input, and generates another signal as output. We can write

\[x[n] \xrightarrow{H} y[n] \]

which means

\[x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] \]
Example: Averager

For example, a weighted local averager is a system. Let’s call it system A.

$$x[n] \xrightarrow{A} y[n] = \sum_{m=0}^{6} g[m] x[n - m]$$
A time-shift is a system. Let’s call it system \mathcal{T}.

$$x[n] \xrightarrow{\mathcal{T}} y[n] = x[n - 1]$$
Example: Square

If you calculate the square of a signal, that’s also a system. Let’s call it system S:

$$x[n] \xrightarrow{S} y[n] = x^2[n]$$
Example: Add a Constant

If you add a constant to a signal, that’s also a system. Let’s call it system C:

$$x[n] \xrightarrow{C} y[n] = x[n] + 1$$
Example: Window

If you chop off all elements of a signal that are before time 0 or after time $N - 1$ (for example, because you want to put it into an image), that is a system:

$$x[n] \xrightarrow{\mathcal{W}} y[n] = \begin{cases} x[n] & 0 \leq n \leq N - 1 \\ 0 & \text{otherwise} \end{cases}$$
Outline

1. Systems
2. Linearity
3. Shift Invariance
4. Written Example
5. Summary
A system is **linear** if these two algorithms compute the same thing:
A system \mathcal{H} is said to be **linear** if and only if, for any $x_1[n]$ and $x_2[n]$,

$$x_1[n] \xrightarrow{\mathcal{H}} y_1[n]$$

$$x_2[n] \xrightarrow{\mathcal{H}} y_2[n]$$

implies that

$$x[n] = x_1[n] + x_2[n] \xrightarrow{\mathcal{H}} y[n] = y_1[n] + y_2[n]$$

In words: a system is **linear** if and only if, for every pair of inputs $x_1[n]$ and $x_2[n]$, (1) adding the inputs and then passing them through the system gives exactly the same effect as (2) passing both inputs through the system, and **then** adding them.
Notice, a special case of linearity is the case when $x_1[n] = x_2[n]$:

$$x_1[n] \xrightarrow{H} y_1[n]$$

$$x_1[n] \xrightarrow{H} y_1[n]$$

implies that

$$x[n] = 2x_1[n] \xrightarrow{H} y[n] = 2y_1[n]$$

So if a system is linear, then **scaling the input** also **scales the output**.
Example: Averager

Let’s try it with the weighted averager.

\[
x_1[n] \xrightarrow{A} y_1[n] = \sum_{m=0}^{6} g[m]x_1[n - m]
\]

\[
x_2[n] \xrightarrow{A} y_2[n] = \sum_{m=0}^{6} g[m]x_2[n - m]
\]

Then:

\[
x[n] = x_1[n] + x_2[n] = \sum_{m=0}^{6} g[m] (x_1[n - m] + x_2[n - m])
\]

\[
= \left(\sum_{m=0}^{6} g[m]x_1[n - m] \right) + \left(\sum_{m=0}^{6} g[m]x_2[n - m] \right)
\]

\[
= y_1[n] + y_2[n]
\]

… so a weighted averager is a linear system.
A squarer is just obviously nonlinear, right? Let’s see if that’s true:

\[
x_1[n] \xrightarrow{S} y_1[n] = x_1^2[n]
\]

\[
x_2[n] \xrightarrow{S} y_2[n] = x_2^2[n]
\]

Then:

\[
x[n] = x_1[n] + x_2[n] \xrightarrow{A} y[n] = x^2[n]
\]

\[
= (x_1[n] + x_2[n])^2
\]

\[
= x_1^2[n] + 2x_1[n]x_2[n] + x_2^2[n]
\]

\[
\neq y_1[n] + y_2[n]
\]

...so a squarer is a **nonlinear system**.
Example: Add a Constant

This one is tricky. Adding a constant seems like it ought to be linear, but it’s actually **nonlinear**. Adding a constant is what’s called an **affine** system, which is not necessarily linear.

\[
\begin{align*}
x_1[n] &\overset{c}{\rightarrow} y_1[n] = x_1[n] + 1 \\
x_2[n] &\overset{c}{\rightarrow} y_2[n] = x_2[n] + 1
\end{align*}
\]

Then:

\[
\begin{align*}
x[n] &= x_1[n] + x_2[n] \overset{A}{\rightarrow} y[n] = x[n] + 1 \\
&= x_1[n] + x_2[n] + 1 \\
&\neq y_1[n] + y_2[n]
\end{align*}
\]

...so adding a constant is a **nonlinear system**.
What about the real world?

Suppose you’re showing people images $x[n]$, and measuring their brain activity $y[n]$ as a result. How can you tell if this system is linear?

- Show them one image, call it $x_1[n]$. Measure the resulting brain activity, $y_1[n]$.
- Show them another image, $x_2[n]$. Measure the brain activity, $y_2[n]$.
- Show them $x[n] = x_1[n] + x_2[n]$. Measure $y[n]$. Is it equal to $y_1[n] + y_2[n]$?
- Repeat this experiment with lots of different images, and their sums, until you are convinced that the system is linear (or not).
1. Systems
2. Linearity
3. Shift Invariance
4. Written Example
5. Summary
A system \mathcal{H} is **shift-invariant** if these two algorithms compute the same thing (here \mathcal{T} means “time shift”):

$$
\begin{align*}
 x[n] & \xrightarrow{\mathcal{T}} x[n-1] & \xrightarrow{\mathcal{H}} y[n] & \xrightarrow{\mathcal{T}} y[n-1] \\
 x[n] & \xrightarrow{\mathcal{H}} y[n] & \xrightarrow{\mathcal{T}} ?
\end{align*}
$$
A system \mathcal{H} is said to be **shift-invariant** if and only if, for every $x_1[n]$,

$$x_1[n] \xrightarrow{\mathcal{H}} y_1[n]$$

implies that

$$x[n] = x_1[n - n_0] \xrightarrow{\mathcal{H}} y[n] = y_1[n - n_0]$$

In words: a system is **shift-invariant** if and only if, for any input $x_1[n]$, (1) shifting the input by some number of samples n_0, and then passing it through the system, gives exactly the same result as (2) passing it through the system, and then shifting it.
Example: Averager

Let’s try it with the weighted averager.

\[
x_1[n] \xrightarrow{A} y_1[n] = \sum_{m=0}^{6} g[m]x_1[n - m]
\]

Then:

\[
x[n] = x_1[n - n_0] \xrightarrow{A} y[n] = \sum_{m=0}^{6} g[m]x[n - m]
\]

\[
= \sum_{m=0}^{6} g[m]x_1[(n - m) - n_0]
\]

\[
= \sum_{m=0}^{6} g[m]x_1[(n - n_0) - m]
\]

\[
= y_1[n - n_0]
\]

...so a weighted averager is a **shift-invariant system**.
Example: Square

Squaring the input is a nonlinear operation, but is it shift-invariant? Let’s find out:

\[x_1[n] \xrightarrow{S} y_1[n] = x_1^2[n] \]

Then:

\[
\begin{align*}
x[n] &= x_1[n - n_0] \xrightarrow{A} y[n] = x^2[n] \\
&= (x_1[n - n_0])^2 \\
&= x_1^2[n - n_0] \\
&= y_1[n - n_0]
\end{align*}
\]

...so computing the square is a **shift-invariant system**.
Example: Windowing

How about windowing, e.g., in order to create an image?

\[x_1[n] \xrightarrow{\mathcal{W}} y_1[n] = \begin{cases} x_1[n] & 0 \leq n \leq N - 1 \\ 0 & \text{otherwise} \end{cases} \]

If we shift the output, we get

\[y_1[n - n_0] = \begin{cases} x_1[n - n_0] & n_0 \leq n \leq N - 1 + n_0 \\ 0 & \text{otherwise} \end{cases} \]

...but if we shift the input \(x[n] = x_1[n - n_0] \), we get

\[y[n] = \begin{cases} x[n] & 0 \leq n \leq N - 1 \\ 0 & \text{otherwise} \end{cases} = \begin{cases} x_1[n - n_0] & 0 \leq n \leq N - 1 \\ 0 & \text{otherwise} \end{cases} \]

\[\neq y_1[n - n_0] \]

...so windowing is a **shift-varying** system (not shift-invariant).
How about the real world?

Suppose you’re showing images \(x[n] \), and measuring the neural response \(y[n] \). How do you determine if this system is shift-invariant?

- Show an image \(x_1[n] \), and measure the neural response \(y_1[n] \).
- Shift the image by \(n_0 \) columns to the right, to get the image \(x[n] = x_1[n - n_0] \). Show people \(x[n] \).
- Is the resulting neural response exactly the same, but shifted to a slightly different set of neurons (shifted “to the right?”) If so, then the system may be shift-invariant!
- Keep doing that, with many different images and many different shifts, until you’re convinced the system is shift-invariant.
Outline

1 Systems
2 Linearity
3 Shift Invariance
4 Written Example
5 Summary
Prove that differentiation, \(y(t) = \frac{dx}{dt} \), is a linear shift-invariant system (in terms of \(t \) as the time index, instead of \(n \)).
A system is **linear** if and only if, for any two inputs \(x_1[n] \) and \(x_2[n] \) that produce outputs \(y_1[n] \) and \(y_2[n] \),

\[
x[n] = x_1[n] + x_2[n] \xrightarrow{H} y[n] = y_1[n] + y_2[n]
\]

A system is **shift-invariant** if and only if, for any input \(x_1[n] \) that produces output \(y_1[n] \),

\[
x[n] = x_1[n - n_0] \xrightarrow{H} y[n] = y_1[n - n_0]
\]