Lecture 8: Sampling Theorem

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2022
1. Review: Sampling

2. Spectrum Plots

3. Spectrum of Oversampled Signals

4. Spectrum of Undersampled Signals

5. The Sampling Theorem

6. Summary

7. Written Example
How to sample a continuous-time signal

Suppose you have some continuous-time signal, $x(t)$, and you’d like to sample it, in order to store the sample values in a computer. The samples are collected once every $T_s = \frac{1}{F_s}$ seconds:

$$x[n] = x(t = nT_s)$$
Aliasing

- A sampled sinusoid can be reconstructed perfectly if the Nyquist criterion is met, \(f < \frac{F_s}{2} \).
- If the Nyquist criterion is violated, then:
 - If \(\frac{F_s}{2} < f < F_s \), then it will be aliased to
 \[
 f_a = F_s - f \\
 z_a = z^*
 \]
 i.e., the sign of all sines will be reversed.
 - If \(F_s < f < \frac{3F_s}{2} \), then it will be aliased to
 \[
 f_a = f - F_s \\
 z_a = z
 \]
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
The **spectrum plot** of a periodic signal is a plot with
- frequency on the X-axis,
- showing a vertical spike at each frequency component,
- each of which is labeled with the corresponding phasor.
Example: Sine Wave

\[x(t) = \sin(2\pi 800t) = \frac{1}{2j} e^{j2\pi 800t} - \frac{1}{2j} e^{-j2\pi 800t} \]

The spectrum of \(x(t) \) is \(\{(-800, -\frac{1}{2j}), (800, \frac{1}{2j})\} \).
Example: Sine Wave

\[x(t) = \sin(2\pi 800t) \]

Spectrum of \(x(t) \)

- Frequency points:
 - \((-1/2j)\)
 - \((1/2j)\)

Sampling Spectrum Plots

- **Oversampled**
- **Undersampled**

Sampling Theorem

Summary

Example
Example: Quadrature Cosine

\[x(t) = 3 \cos \left(2\pi 800 t + \frac{\pi}{4} \right) \]

\[= \frac{3}{2} e^{j\pi/4} e^{j2\pi 800 t} + \frac{3}{2} e^{-j\pi/4} e^{-j2\pi 800 t} \]

The spectrum of \(x(t) \) is \(\{(-800, \frac{3}{2} e^{-j\pi/4}), (800, \frac{3}{2} e^{j\pi/4})\} \).
Example: Quadrature Cosine

\[x(t) = 3\cos(2\pi 800t + \pi/4) \]

Spectrum of \(x(t) \)

\[(3/2)e^{-j\pi/4} \quad (3/2)e^{j\pi/4} \]
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
A signal is called **oversampled** if $F_s > 2f$ (e.g., so that sinc interpolation can reconstruct it from its samples).
The spectrum plot of a discrete-time periodic signal is a regular spectrum plot, but with the X-axis relabeled. Instead of frequency in Hertz $= \frac{\text{cycles}}{\text{second}}$, we use

$$\omega \left[\frac{\text{radians}}{\text{sample}} \right] = \frac{2\pi \left[\frac{\text{radians}}{\text{cycle}} \right]}{F_s \left[\frac{\text{samples}}{\text{second}} \right]} f \left[\frac{\text{cycles}}{\text{second}} \right]$$
How do we plot the aliasing?

Remember that a discrete-time signal has energy at

- f and $-f$, but also $F_s - f$ and $-F_s + f$, and $F_s + f$ and $-F_s - f$, and...
- ω and $-\omega$, but also $2\pi - \omega$ and $-2\pi + \omega$, and $2\pi + \omega$ and $-2\pi - \omega$, and...

Which ones should we plot? Answer: **plot all of them!** Usually we plot a few nearest the center, then add “…” at either end, to show that the plot continues forever.
Example: Sine Wave

Let’s sample at $F_s = 8000$ samples/second.

$$x[n] = \sin \left(\frac{2\pi 800n}{8000} \right)$$

$$= \sin \left(\frac{\pi n}{5} \right)$$

$$= \frac{1}{2j} e^{j\pi n/5} - \frac{1}{2j} e^{-j\pi n/5}$$

The spectrum of $x[n]$ is $\{ \ldots, (-\pi/5, -\frac{1}{2j}), (\pi/5, \frac{1}{2j}), \ldots \}$.
Example: Sine Wave

\[x[n] = \sin\left(\frac{2\pi 800n}{8000}\right) = \sin\left(\frac{\pi n}{5}\right) \]
Example: Quadrature Cosine

\[x[n] = 3 \cos \left(2\pi \frac{800n}{8000} + \frac{\pi}{4} \right) \]
\[= 3 \cos \left(\pi \frac{n}{5} + \frac{\pi}{4} \right) \]
\[= \frac{3}{2} e^{j\pi/4} e^{j\pi n/5} + \frac{3}{2} e^{-j\pi/4} e^{-j\pi n/5} \]

The spectrum of \(x[n] \) is \{... , \(-\pi/5, \frac{3}{2} e^{-j\pi/4}\), \(\pi/5, \frac{3}{2} e^{j\pi/4}\), ... \}.
Example: Quadrature Cosine

\[x(t) = 3 \cos(\pi/4 + 2\pi 8000n/8000) = 3 \cos(\pi/4 + \pi n/5) \]
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
A signal is called **undersampled** if $F_s < 2f$ (e.g., so that sinc interpolation can’t reconstruct it from its samples).
... but Aliasing?

Remember that a discrete-time signal has energy at

- f and $-f$, but also $F_s - f$ and $-F_s + f$, and $F_s + f$ and $-F_s - f$, and...
- ω and $-\omega$, but also $2\pi - \omega$ and $-2\pi + \omega$, and $2\pi + \omega$ and $-2\pi - \omega$, and...

We still want to plot all of these, but now ω and $-\omega$ won’t be the spikes closest to the center. Instead, some other spike will be closest to the center.
Example: Sine Wave

Let’s still sample at $F_s = 8000$, but we’ll use a sine wave at $f = 4800\text{Hz}$, so it gets undersampled.

$$x[n] = \sin \left(2\pi \frac{4800n}{8000} \right)$$
$$= \sin \left(\frac{6\pi n}{5} \right)$$
$$= -\sin \left(\frac{4\pi n}{5} \right)$$
$$= -\frac{1}{2j} e^{j4\pi n/5} + \frac{1}{2j} e^{j4\pi n/5}$$

The spectrum of $x[n]$ is $\{ \ldots, (-4\pi/5, \frac{1}{2j}), (4\pi/5, -\frac{1}{2j}), \ldots \}$.
Example: Sine Wave

\[x[n] = \sin(2\pi 4800n/8000) = \sin(6\pi n/5) = -\sin(4\pi n/5) \]
Example: Quadrature Cosine

\[x[n] = 3 \cos \left(2\pi \frac{4800n}{8000} + \frac{\pi}{4} \right) \]
\[= 3 \cos \left(6\pi n/5 + \frac{\pi}{4} \right) \]
\[= 3 \cos \left(4\pi n/5 - \frac{\pi}{4} \right) \]
\[= \frac{3}{2} e^{-j\pi/4} e^{j4\pi n/5} + \frac{3}{2} e^{j\pi/4} e^{-j4\pi n/5} \]

The spectrum of \(x[n] \) is
\{ \ldots, (-4\pi/5, \frac{3}{2} e^{j\pi/4}), (4\pi/5, \frac{3}{2} e^{-j\pi/4}), \ldots \}. \]
Example: Quadrature Cosine

\[x(t) = 3\cos(\pi/4 + 2\pi 4800n/8000) = 3\cos(\pi/4 + 6\pi n/5) = 3\cos(-\pi/4 + 4\pi n/5) \]
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
General periodic continuous-time signals

Let's assume that $x(t)$ is periodic with some period T_0, therefore it has a Fourier series:

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0} = \sum_{k=0}^{\infty} 2|X_k| \cos\left(\frac{2\pi kt}{T_0} + \angle X_k\right)$$
We already know that $e^{j2\pi kt/T_0}$ will be aliased if $|k|/T_0 > F_N$. So let’s assume that the signal is **band-limited**: it contains no frequency components with frequencies larger than $F_S/2$. That means that the only X_k with nonzero energy are the ones in the range $-N/2 \leq k \leq N/2$, where $N \leq F_S T_0$.

\[
x(t) = \sum_{k=-N/2}^{N/2} X_k e^{j2\pi kt/T_0} = \sum_{k=0}^{N/2} |X_k| \cos \left(\frac{2\pi kt}{T_0} + \angle X_k \right)
\]
Now let's sample that signal, at sampling frequency F_S:

$$x[n] = \sum_{k=-N/2}^{N/2} X_k e^{j2\pi kn/F_S T_0} = \sum_{k=0}^{N/2} |X_k| \cos \left(\frac{2\pi kn}{N} + \angle X_k \right)$$

So the highest digital frequency, when $k = F_S T_0/2$, is $\omega_k = \pi$. The lowest is $\omega_0 = 0$.

$$x[n] = \sum_{\omega_k=-\pi}^{\pi} X_k e^{j\omega_k n} = \sum_{\omega_k=0}^{\pi} |X_k| \cos (\omega_k n + \angle X_k)$$
Spectrum of a sampled periodic signal

- **Sampling**
- **Spectrum Plots**
- **Oversampled**
- **Undersampled**
- **Sampling Theorem**
- **Summary**
- **Example**

![Graph of a sampled periodic signal](image)

- **x(t) with frequencies up to 63kHz**
- **Spectrum of x(t) with frequencies up to +/-64 kHz**
- **x(t) with frequencies up to 7kHz**
- **Spectrum of x(t) with frequencies up to +/-8 kHz**
- **x[n] = x(n/16000)**
- **Spectrum of x[n]**

Time (ms)

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.25</td>
<td>0.0</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.25</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.25</td>
<td>0.0</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.0</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.25</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.25</td>
<td>0.0</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.25</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Frequency (kHz)

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>-60</th>
<th>-40</th>
<th>-20</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Time (samples)

<table>
<thead>
<tr>
<th>Time (samples)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Frequency (radians/sample)

<table>
<thead>
<tr>
<th>Frequency (radians/sample)</th>
<th>-π</th>
<th>-3π/4</th>
<th>-π/2</th>
<th>-π/4</th>
<th>π/4</th>
<th>π/2</th>
<th>3π/4</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
The sampling theorem

As long as $-\pi \leq \omega_k \leq \pi$, we can recreate the continuous-time signal by either (1) using sinc interpolation, or (2) regenerating a continuous-time signal with the corresponding frequency:

$$f_k \left[\frac{\text{cycles}}{\text{second}} \right] = \frac{\omega_k \left[\frac{\text{radians}}{\text{sample}} \right]}{2\pi \left[\frac{\text{radians}}{\text{cycle}} \right]} \times F_s \left[\frac{\text{samples}}{\text{second}} \right]$$

$$x[n] = \cos(\omega_k n + \theta_k) \rightarrow x(t) = \cos(2\pi f_k t + \theta_k)$$
A continuous-time signal $x(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$ if the samples are taken at a rate $F_s = 1/T_s$ that is $F_s \geq 2f_{\text{max}}$.
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
The spectrum plot of a periodic signal is a plot with
- frequency on the X-axis,
- showing a vertical spike at each frequency component,
- each of which is labeled with the corresponding phasor.
The spectrum plot of a discrete-time periodic signal is a regular spectrum plot, but with the X-axis relabeled. Instead of frequency in Hertz = \([\text{cycles} \text{ second}]\), we use

\[
\omega \left[\text{radians} \right] = \frac{2\pi \left[\text{radians} \text{ cycle} \right]}{F_s \left[\text{samples} \text{ second} \right]} \cdot f \left[\text{cycles} \text{ second} \right]
\]
A continuous-time signal $x(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$ if the samples are taken at a rate $F_s = 1/T_s$ that is $F_s \geq 2f_{max}$.
Let $x(t)$ be a sinusoid with some amplitude, some phase, and some frequency.

- Plot the spectrum of $x(t)$.
- Choose an F_s that undersamples it. Plot the spectrum of $x[n]$.