$$
\begin{aligned}
& v(n)=e^{j \omega_{1} n} \omega[a] \\
& w[n]= \begin{cases}1 & 0 \leq n \leq N-1 \\
0 & \text { else }\end{cases} \\
& X(\omega)=\sum_{n=-\infty}^{\infty} x[n) e^{-j \omega n}=\sum_{n=0}^{N-1} e^{j \omega_{0} n} e^{-j \omega n} \\
& =\sum_{n=0}^{N-1} e^{-j\left(\omega-\omega_{0}\right) \wedge}=W\left(\omega-\omega_{0}\right) \\
& \begin{array}{l}
W(\omega)=\sum_{n=0}^{N-1} e^{-j \omega n}=e^{-j \operatorname{jin}\left(\frac{\Gamma-1}{2}\right)} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \\
\text { FREQ SAIFT PROPERTY OF DTFT }
\end{array} \\
& \text { FREQ SAIFT PROPERTY OF DTFT } \\
& X[n]=e^{\text {JWi }} W[n] \quad y(\omega)=W\left(\omega-\omega_{0}\right) \\
& \text { Discrete time impulse. } \\
& \delta\left[n-n_{0}\right]= \begin{cases}1 & n=n_{0} \\
0 & \text { else }\end{cases} \\
& \text { DISCRFTH - KRfaIfanct IMpulSÉ }
\end{aligned}
$$

$$
\stackrel{\stackrel{\rightharpoonup}{1}_{\infty}^{\infty}}{ }=0
$$

CONTINUOUS - FREQUENCT IMPUCSE

$$
S\left(\omega-\omega_{0}\right)= \begin{cases}0 & w \not \omega_{0} \\ \infty & \omega=\omega_{0}\end{cases}
$$

\qquad
\qquad

AND $\quad \int^{\pi} \delta\left(w-w_{1}\right) d w=1$

SAmpling proigerti

$$
\begin{aligned}
= & \int(0) \partial(w) d w- \\
& f(0) \int \delta(w) d w=f(0)
\end{aligned}
$$

70゙い－••

$$
\int_{\omega_{0}-t}^{w_{0} t \epsilon} \underset{x}{x}(\omega) d w=T
$$

$$
\begin{aligned}
& X(\omega) * W(\omega)=\int_{-\pi}^{\pi} X(\theta) w(\omega-\theta) d \theta \\
& X(w)=\delta\left(\omega-\omega_{0}\right) \\
& V!1 \ldots 1 / n=\left(S\left(F 1-\omega_{0}\right) w(\omega-\theta) d \theta\right.
\end{aligned}
$$

$N(\omega) \neq \omega(\omega) \quad$ oしv．
IPLUCT
IN $A=W_{0}$
$A E R E$

$$
=w\left(w \cdot-w_{\gamma}\right)
$$

WRYTTEN EXAMILE
GIVEN $\mid e^{j \omega_{0} n} \longrightarrow 2 \pi \delta\left(\omega-\omega_{0}\right)$

WHAT is $X(\omega)$ if $x[n]=A \cos \left(\omega_{2} n+\theta\right)$

$$
x[1)=\frac{A}{2} e^{-j\left(\omega_{0} n+\theta\right)}+\frac{1}{2} e^{-j\left(\omega_{0} n+\theta\right)}
$$

(A ${ }^{-\theta}$) jwin

$$
1 \lambda,-j\rangle 0_{0}^{-j \omega_{i} n}
$$

$$
=1 \overline{2}) e+\left(i e^{e} J N\right.
$$

$$
X(\omega)=2 \pi\left(\frac{A}{2} e^{j \theta}\right) \delta\left(\omega-\omega_{0}\right)+2 \pi\left(\frac{A}{2} e^{-j \theta}\right) \delta\left(\omega+\omega_{0}\right)
$$

$$
\int_{\omega_{0}-\epsilon}^{\omega_{0}+\epsilon} X(\omega) d \omega=x_{0}^{-\omega_{0}} \frac{A}{4} e^{j \theta}=\pi A e^{j \theta}
$$

(b)

$$
\begin{aligned}
& Y(n)=x(n) \omega(n) \\
& Y(\omega)=\frac{1}{2 \pi}(X(\omega) * V J(\omega))
\end{aligned}
$$

