

$$
\begin{aligned}
& \left(\sin \left(\frac{\pi}{3}(n-109)\right) \quad 62 \leq n \leq 93\right. \\
& \frac{\operatorname{sinc}\left(\frac{\pi}{3}(n-(109-94))\right.}{h(n) *(\delta(n-15]+\delta(n-30))}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& x[n]=\operatorname{sinc}(0.5 \pi n) \\
& h(n)=\frac{1}{3} \operatorname{sinc}(\pi n / 3) \\
& Y(n)=x[n] * h(n] \\
& Y(\omega)=X(\omega) H(\omega)
\end{aligned}
$$

11 l.I < ، "

$$
\begin{aligned}
& \frac{\omega c}{\pi} \operatorname{sinc}\left(\omega_{c} n\right) \longleftrightarrow \begin{cases}1 & \mid \omega_{1}-n \\
0 & \omega_{c}<|\omega|<\pi\end{cases} \\
& 0.5 \sin c\left(0.5 \pi_{n}\right) \\
& x[n] \\
& =\operatorname{sinc}(3.5 \pi n) \\
& h[r] \\
& =\frac{1}{3} \sin \left(\frac{\pi n}{3}\right) \\
& \longrightarrow \\
& \frac{1}{-\frac{\pi}{2}} \frac{1^{\prime}}{\prime} \\
& x(w)
\end{aligned}
$$

$$
\begin{aligned}
& y^{(n)} \\
& =2 \cdot\left(\frac{\omega_{c}}{\pi}\right) \operatorname{sinc}\left(\omega_{c} n\right) \\
& =\frac{2}{3} \sin c\left(\frac{\pi n}{3}\right) \\
& \longleftrightarrow \\
& \xrightarrow[-\frac{\pi}{3}]{\frac{\pi}{3}}{ }^{2} \longrightarrow \\
& \begin{array}{l}
\text { I6 } x(n)=\cos (0.32 \pi n) W_{H}(n) \\
W_{1+}(n)=\left\{\begin{array}{l}
0.54-0.46 \cos \left(\frac{2 \pi}{6} \frac{0}{0}\right) \\
\frac{0 \leq n)}{e l s e} W_{R}(n)
\end{array}\right.
\end{array} \\
& F(N) \quad X[k] \\
& \text {. . . } 1 \\
& 1,5
\end{aligned}
$$

$$
X[k]=\left.X(\omega)\right|_{\omega=\frac{2 \pi k}{N} \quad 1!-J \quad X(n) \quad L E N G T H=I N}
$$

IT is WINDOWED, so FIND $X(\omega)$

$$
x[n]=\frac{1}{2} e^{j 0.32 \pi n} W_{H}[\Lambda]+\frac{1}{2} e^{-j 0.32 \pi n} W_{1+}[\mu]
$$

Free shift property

$$
\begin{aligned}
& \text { FREQ SHIFT PROPERTY } \\
& X(\omega)=\frac{1}{2} W_{H}(\omega-0.32 \pi)+\frac{1}{2} W_{H}(\omega+0.32 \pi) \\
& \Rightarrow F \text { ND } W_{H}(\omega)!
\end{aligned}
$$

$$
W_{H}[n]=W_{R}[n]\left(0.54-0.46 \cos \left(\frac{2 \pi n}{100}\right)\right)
$$

$$
j, \frac{2 \pi n}{100}
$$

$$
\begin{array}{r}
=0.54 \omega_{R}[n]-0.23 e w_{R}[n] \\
-0.23 e^{-j \frac{2 \pi n}{100}} w_{R}[n]
\end{array}
$$

$$
\begin{aligned}
W_{H}(s)= & 0.54 W_{R}(\omega)-0.23 W_{R}\left(\omega-\frac{2 \pi}{100}\right) \\
& -0.23 W_{R}\left(\omega+\frac{2 \pi}{100}\right)
\end{aligned}
$$

$$
\begin{equation*}
X[k]=\left.X(\omega)\right|_{\omega}=\frac{2 \pi k}{100} \tag{1}
\end{equation*}
$$

WIHERE

$$
\bar{X}(\omega)=\frac{1}{2} W_{H}(\omega-0.32 \pi)+\frac{1}{2} W_{H}(\omega+0.32 \pi)
$$

WHEDR

$$
\begin{aligned}
& V \int_{k} 1=\frac{1}{2} w_{L}\left(\frac{2 \pi k}{100}-\frac{32 \pi}{100}\right)+-\frac{1}{2} w_{\mu}\left(\frac{2 \pi k}{100}+\frac{32 \pi}{100}\right) \\
& \text { ヘッ・••• } \\
& =\frac{1}{2} W_{H}\left(\frac{2 \pi(k-16)}{100}\right)+\frac{1}{2} W_{H}\left(\frac{2 \pi(k+16)}{100}\right) \\
& =\frac{1}{2} W_{H}[k-16]+\frac{1}{2} W_{H}[k+16]=\left\{\begin{array}{l}
0 \quad \text { uncis } \\
k=15,16,17
\end{array}\right.
\end{aligned}
$$

Cambint（1）を（2）

$$
\begin{aligned}
& \text { CJMBINE (1) 2(4) } \\
& \omega_{R}[k]=\left.e^{-j\left(\frac{2 \pi k}{100}\right)\left(\frac{4 \pi}{2}\right)} \frac{\sin \left(\frac{100}{2} \frac{k \pi k}{200}\right)}{\sin \left(\frac{1}{2} \frac{2 \pi k}{100}\right)} \quad \frac{\sin (100 \omega / 2)}{\sin (v / 2)}\right|_{\omega-j} \rightarrow \\
& = \begin{cases}0 & k \neq 0 \\
100 & k=0\end{cases} \\
& N \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}
\end{aligned}
$$

Xlkl anonzEZd onvt a J
\qquad

$$
k \in\{15,16,17,85,854,83\}
$$

12

$$
X(x)=\frac{1}{1-0.9 e^{0.1 \pi}}
$$

$$
\begin{aligned}
& \longleftrightarrow[n]=\left(0.9 e^{01.1 \pi j}\right)^{n} u(n) \\
& \tilde{h}^{\operatorname{Rc}(x(n))}
\end{aligned} \quad \begin{aligned}
& \omega_{\operatorname{KEr}}=0.1 \pi \\
&
\end{aligned} \quad \begin{aligned}
& \sigma=-\ln (0.9)
\end{aligned}
$$

$$
\begin{aligned}
& 0.9^{n}=e^{-\sigma n} \quad \Rightarrow \quad \sigma=-\ln (0.9) \\
& \frac{|x[0]|}{|x \cos |} \leqslant \frac{1}{e}=e^{-1} \quad \frac{\mid x[n \mid}{|x(0)|}=0.9^{n} \\
& \begin{aligned}
|x(n)| & \left.=\left.\left|\left(0.9 e^{j 0 .(\pi)}\right)_{n}^{n}(n)\right|\right|_{\lambda 1} \cdot|n| n\right) \mid \\
& =\left.\left|0.91^{n} \cdot\right| e^{j 0.1 \pi}\right|^{1} \cdot \mid n
\end{aligned} \\
& =(0.9)^{n} w[n] \\
& \left|e^{j 0.1 \pi}\right|=|\cos (0.1 \pi)+j \sin (0.1 \pi)| \\
& =\sqrt{\cos ^{2}(0.1 \pi)+-\sin ^{2}(0.1 \pi)}
\end{aligned}
$$

FIND n s.t.

$$
\frac{(0.9)^{n} \leq e^{-1}}{19 \backslash 1.1 .1 .1 .17}
$$

11

$$
\begin{aligned}
y^{(n]} & =x[a]-0.0 \times 1 n- \\
Y(z) & =X(z)(1-1 \\
& =\frac{X(z)}{z^{2}}\left(z^{2}-0 .\right.
\end{aligned}
$$

2EENS

$$
\begin{aligned}
& v j+u . \alpha \times\{-4 J \\
& 0 .\left(z^{-1}+0.2 z^{-2}\right) \\
& 6 z+0.2) \\
& \overline{0.8} \\
& \text { 0. } \stackrel{7}{8}^{\prime} \\
& -\frac{.36}{.44} \\
& =0.3 \pm j \frac{v .44}{2} \\
& \begin{array}{l}
\Delta r_{1}=\theta \\
\tan \theta=\frac{0}{A}=\frac{\sqrt{.44}}{2} \\
0.3
\end{array} \\
& \hat{\imath}^{\operatorname{Ian}(x)} \\
& \Delta r_{1}=a \tan \left(\frac{\sqrt{.44}}{0.6}\right)=a \\
& x r_{2}=-x r_{1}=-a t \operatorname{lon}
\end{aligned}
$$

$$
\begin{aligned}
Y(k] & =e^{-j \pi k} \times[k] \\
& =H(k] \times[k] \quad \omega^{\prime} \\
Y(n) & =h[n] \times O R \\
H[k] & =e^{-j \pi k}=e^{-j \omega}
\end{aligned}
$$

- ERE $N=64$

$$
-H[k]=e^{-j \pi k}
$$

$$
\begin{aligned}
& n_{0}=\frac{N}{2} \\
& H[k]=e^{-j\left(\frac{2 \pi}{N}\right) \frac{N}{2}}
\end{aligned}
$$

$$
h[1] * x[n]=x[n-32]
$$

$\left.n_{0}\right|_{\omega=\frac{2 \pi k}{N} \quad i F}$

$$
\tau^{x[n-32]} \sqrt{1}
$$

$$
\begin{aligned}
\rightarrow h[n] & =\delta\left[n-\frac{N}{2}\right] \\
& =\delta[n-32]
\end{aligned}
$$

$$
h[-] \oplus x[n]=x\left[\langle n-32\rangle_{6}\right.
$$

$$
=v\{n]
$$

7
\qquad
$\begin{array}{r}63 \\ 32 \\ \hline\end{array}$

$$
\psi]=\sum_{l=-\infty}^{\infty} v[1-64 l l]
$$

$$
81-64=15
$$

$15 \leq_{n} \leq 47 \quad 95-64=31$
els

