Sample Exam q^{5}

$$
\begin{aligned}
& x(t)=-2 t \sin (40 \pi t) \\
& F_{s}=100 \mathrm{~Hz} \\
& N=20 \text {-sarple DFT } \\
& x[n]=\left.k(t)\right|_{t=\frac{n}{F_{s}}}=-2!+\sin \left(40 \pi \frac{n}{100}\right) \\
& =-\sigma 2+\sin (0.4 \pi n)<\underbrace{2 \pi}_{\substack{\text { MULTIPLE } \\
2 \pi}} \\
& \left.X[k]=\sum_{n=0}^{19} x[n] e^{-j \frac{2 \pi k n}{20}}-\frac{04 \pi=\frac{8 \pi}{20}}{x[n]=-2 e^{0}+\frac{1}{2 j}\left[e^{j} t^{-8 \pi} \cdot 20\right.}-e^{-j 1 / 20}\right] \\
& x[k]=\left.X\left(\omega_{r}\right)\right|_{\omega_{L}=\frac{2 \pi k}{N}} \\
& X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n} \\
& \left.j^{8 \pi n / 20}, 1-j 8 \pi / 20\right) \ldots \Gamma_{1} 1
\end{aligned}
$$

$$
\begin{aligned}
& x[n]=\left(-2+\frac{1}{2} e \quad-\frac{j_{j}}{2 j} e \quad J W_{R I N}\right. \\
& \omega_{R}(\omega)=e^{-j \omega\left(\frac{N-1}{2}\right) \frac{\sin (1, N / 2)}{\sin (\omega / 2)}} \\
& \delta\left(n-n_{0}\right) \longleftrightarrow z^{-n_{0}}=-e^{-j \omega n_{0}} \\
& X(\omega)=\frac{1}{2 \pi} \alpha_{1}\left(-2+\frac{1}{2 J} e^{-\frac{8 \pi n}{20}}-\frac{1}{2 J} e^{-\frac{\gamma \pi n}{20}}\right) * \omega_{k}(\omega) \\
& q_{1}(\eta)=2 \pi f\left(\omega_{1}^{\prime}\right) \\
& \frac{1}{2} \int_{-\pi} x(\omega) e^{j-} d \omega \\
& =\frac{1}{2} k \int_{-\pi}^{\pi} 2 \pi \delta(\omega) e^{j \omega n} d \omega \\
& =e^{j \omega \tau} l_{\omega=0}=1 \\
& f_{1}\left\{-2+\frac{1}{2 j} e^{j \frac{8 \pi n}{20}}-\frac{1}{2 j} e^{-j \frac{8 \pi n}{20}}\right\} \\
& =-2 \cdot 2 \pi \delta(\omega)+\frac{1}{2 j} \cdot 2 \pi \delta\left(\omega-\frac{8 \pi}{20}\right) \\
& -\frac{1}{2 \pi} \cdot 2 \pi \delta\left(\omega+\frac{8 \pi}{20}\right)
\end{aligned}
$$

$$
=-4 \pi \delta(\omega)+\frac{\pi}{j} \delta\left(\omega-\frac{8 \pi}{20}\right)-\frac{\pi}{j} \delta\left(\omega+\frac{011}{20}\right)
$$

$$
x[k]=\left\{\begin{array}{cl}
-\infty & - \\
\frac{1}{25} & k=4 \\
-\frac{1}{25} & k=N-4=16 \\
0 & \text { otherwisise }
\end{array}\right.
$$

SINJSOIDAL COMPONENTS WERE AT $\omega=0$ AND $\omega=0.4 \pi$, BOTH OF WHICH ARE MULTIPLES OF $\frac{2 \pi}{1 J}$
\Rightarrow WINDOWING DOES NOT CAUSE ANY ENERGY TO LEAK FROM THE BINS $K=\{-4,0,4\}$ INTO ANT OTHER BINS.
$\delta(\omega)$ introduced in lecture 26.
$\frac{D E F(N 1+10)}{\cdot \delta}(0)=\infty$

- $\delta(\omega)=0$ FOR $\omega \neq 0$
- $\int_{-\epsilon}^{\epsilon} \delta(\omega) \int(\omega) d \omega=f(0)$

$$
\int_{-\epsilon}^{\epsilon} \delta(\omega) \operatorname{sw}=1
$$

BESNLTING pROPERTIES

$$
\begin{gathered}
=\delta\left(\omega-\omega_{0}\right) * W(\omega)=W\left(w-\omega_{0}\right) \quad D \\
\cdot f_{1}\left\{e^{j \omega_{0} n}\right\}=2 \pi \delta\left(\omega-\omega_{0}\right)
\end{gathered}
$$

Problen 1

1

$$
x[n]=\delta[n-15]+\delta[n-30]
$$

$$
X[k]=\sum_{n=0}^{31} x[n] e^{-j^{2 \pi k-2} / N}
$$

$$
\begin{aligned}
& -j=0 \\
& -j \pi 15 k / N \quad-j \pi 30 k / N
\end{aligned}
$$

$$
\begin{aligned}
& =e+e \\
& =e^{-j 2 \pi / 5 k / 32}+e^{-j 2 \pi 30 k / 32}
\end{aligned}
$$

b

$$
h(r)= \begin{cases}e^{-r / 14} & 0 \leq r \leq 14 \\ 0 & \text { else }\end{cases}
$$

$$
\begin{aligned}
& Y[k]=H[k] X \mid k] \\
& y(n)=h[1] *(n) \\
& =h[1-15]+\left.h[n-30]\right|_{\text {modulo }} 32 \\
& \xrightarrow{\text { e-1 }} \overbrace{15}^{h(n) * x(n)} n \\
& |h[n] \otimes[n]=h(n) * x| n] \text { mol uLO } 32
\end{aligned}
$$

$$
y[n]= \begin{cases}e^{-(n-15) / 14} & 115 \leq n \leq 29 \\ e^{-(n-30) / 14} & 30 \leq n \leq 31 \\ e^{-2 / 14} e^{-n / 14} & 0 \leq n \leq 12 \\ 0 & 13 \leq n \leq 14\end{cases}
$$

$$
\text { 12] } \begin{aligned}
& v(\hat{n}]=x[n)+0.9 v[n \\
& y(n]=v[n]-0.7 y[n \\
& v(z)=x(z)+0.9 z \\
& Y(z)=v(z)-0.7 \\
& V(z)\left(1-0.9 z^{-1}\right)= \\
& Y(z)\left(1+0.7 z^{-1}\right)=
\end{aligned}
$$

-1)
-1]

$$
\begin{aligned}
& -V(z) \\
& z^{-1} Y(z)
\end{aligned}
$$

$x(z)$

$$
=V(z)
$$

$$
\begin{aligned}
& \frac{v(z)}{x(z)}=\frac{1}{1-0.9 z^{-1}} \\
& \frac{Y(z)}{V(z)}=\frac{1}{1+0.7 z} .-1 \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1}{\left(1-0.9 z^{-1}\right)\left(1+0.7 z^{-1}\right)} \\
& 1 \\
& \frac{101}{\left(1-0.9 z^{1}\right)\left(1+0.7 z^{-1}\right)}=\frac{c_{1}}{1-0.9 z^{-1}}+\frac{-c}{1+0.7 z^{-1}} \\
& \frac{1}{1+0.7(0.9)^{-1}}=c_{1}=\frac{1}{1+7 / 9} \\
& \frac{1}{1-0.9(0.7)^{1}}=C_{2}=\frac{1}{1-9 / 7} \\
& n[n]=\left(\frac{1}{1+\frac{7}{9}}\right)(0.9)^{n} n[n]+\left(\frac{1}{1-\frac{9}{7}}\right)(-0.7)^{n} n[n]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
3=\frac{2 \pi 440}{F_{5}}=\frac{2 \pi 440}{10000} \\
F_{5}=10,000
\end{array} \\
& \sigma=\frac{\pi 20}{F_{S}}=\frac{\pi 20}{1800} \frac{1}{0} \\
& \left.y_{[n}\right]=x[n]+a_{1} y_{[n-1]}^{[n}+a_{2} y[n-2] \\
& Y(z)=X(z)+a_{1} z^{-1} Y(z)+a_{2} z^{-2} Y(z) \\
& \text { 1, 1. -2\ , ノノー } \\
& Y(z)\left(1-a_{1} z^{-}-a_{2} z^{-}\right)=X(-1) \\
& H(z)=\frac{1}{1-a_{1} z^{-1}-a_{2} z^{-2}}=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)} \\
& =\frac{1}{1-\left(p_{1}+p_{1}^{*}\right)_{i} 1^{-1}+\left|p_{1}\right|^{2} z^{-2}} \\
& \rho_{1}=e^{-\sigma+j \omega_{0}}=e^{-\frac{\pi 20}{10000}+j \frac{2 \pi 440}{10000}} \\
& \pi 20 \quad 12 \pi 440 \\
end{aligned}
$$

$$
\begin{aligned}
& a_{1}=p_{1}+p_{1}^{*}=2 e^{-\frac{10002}{100}} \cos \left(\frac{}{10000}\right) \\
& a_{2}=-\left|p_{1}\right|^{2}=-e^{-\frac{2 \pi 20}{10000}}
\end{aligned}
$$

b
Purt damper resinatorj

$$
h\left[n=\frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma_{1} n} \sin \frac{\left(\omega_{1}(n+1)\right) u[n]}{1} e^{\left.-\frac{\pi \dot{\alpha}}{-\frac{100 n}{2000}} \sin \left(\frac{2 \pi 440}{1000}(n+1)\right) u[n]\right)}\right.
$$

$\lambda \left\lvert\, \sin \left(\frac{2 \pi 440}{10005}\right)-\right.$
(BT PFE YOU'D GET

$$
\int_{\gamma} h[\wedge]=C_{1} e^{-\left(\left(\frac{\pi 20}{1000}\right)+j\left(\frac{2 \pi 440}{10000}\right)\right.}
$$

WHICH IS ALSS JALID A, FIMD OUT WHAT C_{1}

$$
\ln +C_{2} e^{-\left(\left(\frac{\pi 20}{1000}\right)-j\left(\frac{2 \pi 440}{1000 j}\right)\right) n}
$$

JSWER If YOJ CAN AND $C_{2} A R E$

