# ECE 401 Signal and Image Analysis Homework 4 

UNIVERSITY OF ILLINOIS<br>Department of Electrical and Computer Engineering

Assigned: 10/11/2022; Due: 10/19/2022
Reading: DSP First Chapter 6

## Problem 4.1

Consider this filter:

$$
y[n]=x[n]+x[n-1]
$$

Show that the magnitude response of this filter is $|H(\omega)|=2 \cos (\omega / 2)$.

## Solution:

$$
\begin{gathered}
h[n]= \begin{cases}1 & n=0,1 \\
0 & \text { otherwise }\end{cases} \\
H(\omega)=\sum_{n} h[n] e^{-j \omega n}=1+e^{-j \omega}=e^{-j \omega / 2}\left(e^{j \omega / 2}+e^{-j \omega / 2}\right)=e^{-j \omega / 2} 2 \cos (\omega / 2)
\end{gathered}
$$

## Problem 4.2

Suppose you have a filter whose frequency response is

$$
H(\omega)=14 e^{-j 6 \omega}
$$

Show that, if $x[n]=\cos (\omega n)$, the effect of convolving $y[n]=x[n] * h[n]$ is to
(a) scale $x[n]$ by a factor of 14 , and
(b) delay it by 6 samples.

Solution: Using the frequency response formula,

$$
\begin{aligned}
y[n] & =|H(\omega)| \cos (\omega n+\angle H(\omega)) \\
& =14 \cos (\omega n-6 \omega) \\
& =14 \cos (\omega(n-6))
\end{aligned}
$$

## Problem 4.3

The signals $x_{1}(t)$ and $x_{2}(t)$ are cosines an octave apart (roughly C6 and C7):

$$
\begin{aligned}
& x_{1}(t)=\cos (2 \pi 1000 t) \\
& x_{2}(t)=\cos (2 \pi 2000 t)
\end{aligned}
$$

The signals are sampled (at $F_{s}=16000$ samples/second), then the resulting signals $x_{1}[n]$ and $x_{2}[n]$ are passed through a first-difference operator:

$$
\begin{aligned}
& y_{1}[n]=x_{1}[n]-x_{1}[n-1] \\
& y_{2}[n]=x_{2}[n]-x_{2}[n-1]
\end{aligned}
$$

What are the amplitudes of the signals $y_{1}[n]$ and $y_{2}[n]$ ?
Solution: In radians/second, the frequencies are

$$
\omega_{1}=\frac{2 \pi 1000}{16000}=\frac{\pi}{8}, \quad \omega_{2}=\frac{2 \pi 2000}{16000}=\frac{\pi}{4}
$$

The frequency response of the first-difference operator is

$$
H(\omega)=1-e^{-j \omega}=2 j e^{-j \omega / 2} \sin (\omega / 2)
$$

Which has these magnitude responses:

$$
\left|H\left(\frac{\pi}{8}\right)\right|=2 \sin (\pi / 16) \approx 0.39, \quad\left|H\left(\frac{\pi}{4}\right)\right|=2 \sin (\pi / 8) \approx 0.77
$$

## Problem 4.4

The signals $x_{1}(t)$ and $x_{2}(t)$ are cosines an octave apart (roughly C6 and C7):

$$
\begin{aligned}
& x_{1}(t)=\cos (2 \pi 1000 t) \\
& x_{2}(t)=\cos (2 \pi 2000 t)
\end{aligned}
$$

The signals are sampled (at $F_{s}=16000$ samples/second), then the resulting signals $x_{1}[n]$ and $x_{2}[n]$ are passed through a seven-sample local average:

$$
\begin{aligned}
& y_{1}[n]=\frac{1}{7} \sum_{m=-3}^{3} x_{1}[n-m] \\
& y_{2}[n]=\frac{1}{7} \sum_{m=-3}^{3} x_{2}[n-m]
\end{aligned}
$$

What are the amplitudes of the signals $y_{1}[n]$ and $y_{2}[n]$ ?
Solution: In radians/second, the frequencies are

$$
\omega_{1}=\frac{2 \pi 1000}{16000}=\frac{\pi}{8}, \quad \omega_{2}=\frac{2 \pi 2000}{16000}=\frac{\pi}{4}
$$

The frequency response of the seven-sample central local average filter is

$$
H(\omega)=\frac{\sin (7 \omega / 2)}{7 \sin (\omega / 2)}
$$

Which has these magnitude responses:

$$
\left|H\left(\frac{\pi}{8}\right)\right|=\frac{\sin (7 \pi / 16)}{7 \sin (\pi / 16)} \approx 0.72, \quad\left|H\left(\frac{\pi}{4}\right)\right|=\frac{\sin (7 \pi / 8)}{7 \sin (\pi / 8)} \approx 0.14
$$

