ECE 401 Signal and Image Analysis Homework 2

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: 9/7/2022; Due: 9/14/2022
Reading: DSP First pp. 12-34, 50-58, 61-71

Problem 2.1

Suppose that

$$
v(t)=2 \cos (2 \pi 880 t)+2 \sin (2 \pi 1320 t)
$$

What is the fundamental frequency? What are the Fourier series coefficients, V_{k} ?
Solution: The fundamental frequency is the GCD of 880 and 1320 , which is $F_{0}=440 \mathrm{~Hz}$. The component at $k=2\left(f=2 F_{0}=880\right)$ is

$$
2 \cos \left(2 \pi 2 F_{0} t\right)=e^{j 2 \pi 2 F_{0} t}+e^{-j 2 \pi 2 F_{0} t}
$$

so $V_{2}=V_{-2}=1$. The component at $k=3\left(f=3 F_{0}=1320\right)$ is

$$
2 \sin \left(2 \pi 3 F_{0} t\right)=2\left(\frac{e^{j 2 \pi 3 F_{0} t}-e^{-j 2 \pi 3 F_{0} t}}{2 j}\right)
$$

so $V_{3}=\frac{1}{j}$, and $V_{-3}=\frac{1}{-j}$. Putting it all together,

$$
V_{k}= \begin{cases}1 & k=2, k=-2 \\ 1 / j & k=3 \\ -1 / j & k=-3 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2.2

Suppose that $x(t)$ is a square wave with a period of T_{0}, and with the following definition:

$$
x(t)= \begin{cases}\frac{1}{2} & -\frac{T_{0}}{4}<t<\frac{T_{0}}{4} \\ -\frac{1}{2} & \frac{T_{0}}{4}<t<\frac{3 T_{0}}{4}\end{cases}
$$

We showed in class that the Fourier coefficients of this square wave are

$$
X_{k}= \begin{cases}0 & k \text { even } \\ \frac{(-1)^{(|k|-1) / 2}}{\pi k} & k \text { odd }\end{cases}
$$

Remember that the real-valued coefficients correspond to a Fourier series where all of the components are cosines. That makes sense, because the signal has even symmetry $(x(t)=x(-t))$, just like a cosine.

Suppose that we delay the signal by one quarter period, to produce the signal

$$
y(t)= \begin{cases}\frac{1}{2} & 0<t<\frac{T_{0}}{2} \\ -\frac{1}{2} & \frac{T_{0}}{2}<t<T_{0}\end{cases}
$$

Notice that $y(t)$ has odd symmetry $(y(t)=-y(-t))$, just like a sine wave. In that case, we might speculate that the Fourier seires expansion will be composed entirely of sine waves, i.e., the Fourier series coefficients, Y_{k}, will all be imaginary numbers.

Use the time-delay property of the spectrum (from lecture 3) to find out what happens to X_{k} when $x(t)$ is delayed by exactly one quarter period.

Solution: The time-delay property of a spectrum is that if $y(t)=x(t-\tau)$, then

$$
Y_{k}=X_{k} e^{-j 2 \pi f_{k} \tau}
$$

where, in our case, $f_{k}=k F_{0}=k / T_{0}$, and $\tau=T_{0} / 4$, so

$$
Y_{k}=X_{k} e^{-j 2 \pi\left(k / T_{0}\right)\left(T_{0} / 4\right)}=X_{k} e^{-j \pi k / 2}=X_{k} \times(-j)^{k}
$$

The multiplier $(-j)^{k}$ is imaginary for odd values of k, and real for even values of j. But we already know that $X_{k}=0$ for even values of j, so this time delay will make all of its nonzero coefficients into imaginary numbers. Specifically,

$$
Y_{k}= \begin{cases}0 & k \text { even } \\ \frac{(-1)^{(k-1) / 2} j}{\pi k} & k \text { odd }\end{cases}
$$

Problem 2.3

Suppose that $z(t)$ is a triangle wave with a period of T_{0}, and with the following definition:

$$
z(t)= \begin{cases}\frac{t}{2}-\frac{T_{0}}{4} & 0<t<\frac{T_{0}}{2} \\ -\frac{t}{2}+\frac{3 T_{0}}{4} & \frac{T_{0}}{2}<t<T_{0}\end{cases}
$$

Notice that this signal is exactly the anti-derivative of the signal $y(t)$ from problem (1), i.e., $y(t)=d z / d t$. Use the differentiation property of the spectrum (from lecture 3) in order to find the Fourier series coefficients Z_{k}.

Solution: The differentiation property of the spectrum says that, if $y(t)=d z / d t$, then

$$
Y_{k}=j 2 \pi f_{k} Z_{k}
$$

where, in our case, $f_{k}=k F_{0}=k / T_{0}$, so $Y_{k}=j 2 \pi k Z_{k} / T_{0}$, so

$$
Z_{k}=\frac{T_{0} Y_{k}}{j 2 \pi k}= \begin{cases}0 & k \text { even } \\ T_{0} \frac{(-1)^{(k-1) / 2}}{2 \pi^{2} k^{2}} & k \text { odd }\end{cases}
$$

Notice that the Z_{k} are real numbers! If you plot $z(t)$ as a function of time, you can see that it has even symmetry $(z(t)=z(-t))$.

Problem 2.4

Suppose that a violin is playing the note $\mathrm{A} 4(440 \mathrm{~Hz})$, but our recording quality is bad, so we only get the first two harmonics:

$$
x(t)=\sum_{k=-2}^{2} a_{k} e^{j 2 \pi k 440 t}
$$

Suppose we measure the spectrum, and find it to be

$$
\{(-880,0.01),(-440,1),(0,0),(440,1),(880,0.01)\}
$$

In order to improve the balance a little, we try differentiating the tone. Our differentiator also imposes a delay and a DC offset, though, so what we get is

$$
y(t)=\frac{d x(t-0.001)}{d t}+1.5
$$

Find the spectrum of $y(t)$.
Solution: The time delay multiplies each coefficient by a phase offset term, $e^{-j 2 \pi f_{k} \tau}$. Differentiation multiplies each coefficient by $j 2 \pi f_{k}$. The DC offset just adds 1.5 to the zeroth spectral coefficient. The resulting spectrum is
$\left\{\left(-880,-j 2 \pi 8.8 e^{j 2 \pi 0.88}\right),\left(-440,-j 2 \pi 440 e^{j 2 \pi 0.44}\right),(0,1.5),\left(440, j 2 \pi 440 e^{-j 2 \pi 0.44}\right),\left(880, j 2 \pi 8.8 e^{-j 2 \pi 0.88}\right)\right\}$
which can be written as
$\left\{\left(-880,2 \pi 8.8 e^{j\left(2 \pi 0.88-\frac{\pi}{2}\right)}\right),\left(-440,2 \pi 440 e^{j\left(2 \pi 0.44-\frac{\pi}{2}\right)}\right),(0,1.5),\left(440,2 \pi 440 e^{-j\left(2 \pi 0.44-\frac{\pi}{2}\right)}\right),\left(880,2 \pi 8.8 e^{-j\left(2 \pi 0.88-\frac{\pi}{2}\right)}\right)\right\}$
or equivalently

$$
\left\{\left(-880,17.6 \pi e^{j 1.26 \pi}\right),\left(-440,880 \pi e^{j 0.38 \pi 0.44}\right),(0,1.5),\left(440,880 \pi e^{-j 0.38 \pi}\right),\left(880,17.6 \pi e^{-j 1.26 \pi}\right)\right\}
$$

