ECE 401 Signal and Image Analysis Homework 1

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: 8/24/2022; Due: 8/31/2022
Reading: DSP First pp. 12-34, 50-58, 61-71

Problem 1.1

Find $\angle z$ as a function of a and b.

$$
\begin{equation*}
z=e^{j a}+e^{j b} \tag{1.1-1}
\end{equation*}
$$

Solution:

$$
\angle a=\operatorname{atan}\left(\frac{\sin (a)+\sin (b)}{\cos (a)+\cos (b)}\right)
$$

Problem 1.2

In standard tuning, the middle A note on a piano (A4) has a frequency of 440 Hz . Consider the note

$$
x(t)=14 \cos (2 \pi 440 t+0.88 \pi)
$$

Sketch one complete period of $x(t)$, from its first peak after $t=0$ until its second peak after $t=0$. Label the times of both peaks, and the value of $x(t)$ at both peaks.

Solution: The peaks are at

$$
440(t+0.001)=k \ldots
$$

where k is any integer. The first value of k that gives a positive t is $k=1$,

$$
t=\frac{1}{440}-0.001 \approx 0.0013
$$

The second peak is at

$$
t=\frac{2}{440}-0.001 \approx 0.0035
$$

The amplitude is $A=14$.

Problem 1.3

Suppose you're given the signal

$$
x(t)=\cos (2 \pi 440 t)+3 \sin (2 \pi 440 t)
$$

Find the phasor representation of $x(t)$, and simplify it to polar form. You might want to take advantage of facts like $\sin (x)=\cos \left(x-\frac{\pi}{2}\right)$, and $\sin \left(\frac{\pi}{2}\right)=1$, and $\cos \left(\frac{\pi}{2}\right)=0$.

Solution:

$$
\begin{aligned}
x(t) & =\cos (2 \pi 440 t)+3 \cos \left(2 \pi 440 t-\frac{\pi}{2}\right) \\
& =\Re\left\{e^{j 2 \pi 440 t}+3 e^{j 2 \pi 440 t} e^{-j \frac{\pi}{2}}\right\}
\end{aligned}
$$

So the phasor is

$$
\begin{aligned}
1+3 e^{-j \frac{\pi}{2}} & =1+3 \cos (\pi / 2)-3 j \sin (\pi / 2) \\
& =1-3 j \\
& =\sqrt{10} e^{-j \operatorname{atan}(3)}
\end{aligned}
$$

Problem 1.4

Kwikwag's beat-tones example on Wikipedia adds two tones, at the frequencies 110 Hz and 104 Hz :

$$
x(t)=\cos (2 \pi 110 t)+\cos (2 \pi 104 t)
$$

Find a sequence of frequencies and phasors, $\left\{\left(f_{-2}, a_{-2}\right), \ldots,\left(f_{2}, a_{2}\right)\right\}$, such that

$$
x(t)=\sum_{k=-2}^{2} a_{k} e^{j 2 \pi f_{k} t}
$$

Solution: The easiest way to solve this one is to just use Euler's identity:

$$
x(t)=\frac{1}{2}\left(e^{j 2 \pi 110 t}+e^{-j 2 \pi 110 t}\right)+\frac{1}{2}\left(e^{j 2 \pi 104 t}+e^{-j 2 \pi 104 t}\right)
$$

At 0 Hz , there is no energy, so the complete spectrum has these frequencies and amplitudes:

$$
\begin{aligned}
\left(f_{-2}, a_{-2}\right) & =(-110,0.5) \\
\left(f_{-1}, a_{-2}\right) & =(-104,0.5) \\
\left(f_{0}, a_{0}\right) & =(0,0) \\
\left(f_{1}, a_{1}\right) & =(104,0.5) \\
\left(f_{2}, a_{2}\right) & =(110,0.5)
\end{aligned}
$$

One could analyze these as the harmonics of a 2 Hz fundamental, in which case, for $T_{0}=0.5$ seconds, we would have

$$
X_{k}= \begin{cases}0.5 & k \in\{-55,-52,52,55\} \\ 0 & \text { otherwise }\end{cases}
$$

