ECE 401 Signal and Image Analysis Homework 1

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: 8/24/2022; Due: 8/31/2022
Reading: DSP First pp. 12-34, 50-58, 61-71

Problem 1.1

Find $\angle z$ as a function of a and b.

$$
\begin{equation*}
z=e^{j a}+e^{j b} \tag{1.1-1}
\end{equation*}
$$

Problem 1.2

In standard tuning, the middle A note on a piano (A4) has a frequency of 440 Hz . Consider the note

$$
x(t)=14 \cos (2 \pi 440 t+0.88 \pi)
$$

Sketch one complete period of $x(t)$, from its first peak after $t=0$ until its second peak after $t=0$. Label the times of both peaks, and the value of $x(t)$ at both peaks.

Problem 1.3

Suppose you're given the signal

$$
x(t)=\cos (2 \pi 440 t)+3 \sin (2 \pi 440 t)
$$

Find the phasor representation of $x(t)$, and simplify it to polar form. You might want to take advantage of facts like $\sin (x)=\cos \left(x-\frac{\pi}{2}\right)$, and $\sin \left(\frac{\pi}{2}\right)=1$, and $\cos \left(\frac{\pi}{2}\right)=0$.

Problem 1.4

Kwikwag's beat-tones example on Wikipedia adds two tones, at the frequencies 110 Hz and 104 Hz :

$$
x(t)=\cos (2 \pi 110 t)+\cos (2 \pi 104 t)
$$

Find a sequence of frequencies and phasors, $\left\{\left(f_{-2}, a_{-2}\right), \ldots,\left(f_{2}, a_{2}\right)\right\}$, such that

$$
x(t)=\sum_{k=-2}^{2} a_{k} e^{j 2 \pi f_{k} t}
$$

