b4 RIS C-\/° RV64IM_Zicsr Instruction Quick Reference

Base Integer Instructions: RV64l Multiply-Divide Instructions: RV64M
Name Instruction RTL Name Instruction RTL
Shift Left Logical SLL rd,rsi,rs2 rd ¢ rsl << rs2 MULtiply MUL rd,rsl,rs2 rd ¢ (rs1 = rs2)[63: 0]
Shift Left Log. Imm SLLI rd,rsl,imm rd ¢ rsi1 << imm[4:0] MULtiply High MULH rd,rsi,rs2 rd ¢ (rs1 » rs2)[127:64]
Shift Right Logical SRL rd,rsil,rs2 rd ¢ rsl >> rs2 MULtiply High S/U MULHSU rd,rsil,rs2 rd ¢ (rsl * rs2)[127:64]
Shift Right Log. Imm SRLI rd,rsl,imm rd ¢ rs1 >> imm[4:0] MULtiply High Uns MULHU rd,rsil,rs2 rd ¢ (rsl * rs2)[127:64]
Shift Right Arithmetic SRA rd,rsil,rs2 rd ¢ rsl >> rs2 DIVide DIV rd,rsl,rs2 rd ¢ rs1 / rs2
Shift Right Arith. Imm SRAI rd,rsl,imm rd ¢ rs1 >> imm[4:0] DIVide Unsigned DIVU rd,rsl,rs2 rd ¢ rs1 / rs2
ADD ADD rd,rsi,rs2 rd ¢ rsl + rs2 REMainder REM rd,rsl,rs2 rd ¢ rs1 % rs2
ADD Immediate ADDI rd,rsi,imm rd ¢ rs1 + imm[11:0] REMainder Unsigned REMU rd,rsl,rs2 rd ¢ rs1l % rs2
SUBtract SUB rd,rsl,rs2 rd ¢ rsl - rs2 - H
Load Upper Imm LUI rd,imm rd ¢ imm[19:0] << 12 RV Perlleged |nStrUCt|0nS
Add Upper Imm to PC AUIPC rd,imm rd ¢ PC + (imm << 12) M-mode trap RETurn MRET
XOR XOR rd,rsl,rs2 rd ¢ rs1 ~ rs2 S-mode trap RETurn SRET
XOR Immediate XORI rd,rsi,imm rd ¢ rs1 "~ imm[11:0] Wait For Interrupt WFI
OR OR rd,rsi,rs2 rd ¢ rsi1 | rs2 .
OR Immediate ORI rd,rsi,imm rd ¢ rs1 | imm[11:0] PseUdo InStrUCtlons
AND AND rd,rsil,rs2 rd ¢ rs1 & rs2 Name Instruction RTL
AND Immediate ANDI rd,rsl,imm rd ¢ rs1 & imm[11:0] Load address LA rd, symbol rd ¢ symbol
Set if < SLT rd,rsi,rs2 rd ¢ (rs1 <rs2) ?21:0 No operation NOP
Set if < Immediate SLTI rd,rsi,imm rd ¢ (rs1 < imm) 2 1 : 0 Load immediate LI rd, imm rd ¢ imm
Set if < Unsigned SLTU rd,rsl,rs2 rd ¢ (rsl1 <rs2) 2 1:0 Copy register MV rd, rsi rd ¢ rsl
Set if < Imm Unsigned SLTIU rd,rsl,imm rd ¢ (rs1 < imm) 2 1 : 0 One’s complement NOT rd, rsi rd ¢ ~rsil
Branch = BEQ rsl,rs2,imm if(rsl == rs2) PC += imm Two’s complement NEG rd, rsi rd ¢ ~rs1 + 1
Branch # BNE 1rsl1,rs2,imm if(rsl != rs2) PC += imm Two's complement word NEGW rd, rsl rd ¢ ~rsl1 + 1
Branch < BLT 1rsil,rs2,imm if(rsl < rs2) PC += imm Sign extend word SEXT.W rd, rsi rd ¢ rs1[31:0]
Branch > BGE rsl1,rs2,imm if(rsl >= rs2) PC += imm Set if = zero SEQZ rd, rsl rd ¢ (rs1 ==0) 21 :0
Branch < Unsigned BLTU rsil,rs2,imm if(rsl < rs2) PC += imm Set if # zero SNEZ rd, rsl rd ¢« (rs1 !=0) 21 :0
Branch 2 Unsigned BGEU rsi,rs2,imm if(rsl >= rs2) PC += imm Set if < zero SLTZ rd, rsi rd ¢ (rs1 < 0)?21:0
Jump & Link JAL rd,imm rd ¢ PC+4; PC += imm Set if > zero SGTZ rd, rsl rd ¢« (rs1 > 0) 21 :0
Jump & Link Register JALR rd,rs1,imm rd ¢ PC+4; PC ¢ rsl + imm Branch if = zero BEQZ rs1, imm if(rsl == 0) PC += imm
Synch thread FENCE Fence on all memory and I/O0 Branch if # zero BNEZ rsl, imm if(rsl !'= 0) PC += imm
Environment CALL ECALL Transfer control to 0S Branch if < zero BLEZ rs1, imm if(rsl <= 0) PC += imm
Load Byte LB rd,imm(rsl) rd ¢ M{rsi+imm][7:0] Branch if > zero BGEZ rsi, imm if(rs1 >= 0) PC += imm
Load Half word LH rd,imm(rs1) rd ¢ M[rsi+imm][15:0] Branch if < zero BLTZ rsi, imm if(rs1 < 0) PC += imm
Load Word LW rd,imm(rs1) rd ¢ M[rsi+imm][31:0] Branch if > zero BGTZ rsi, imm if(rsi > 0) PC += imm
Load Double Word LD rd,imm(rs1) rd ¢ M[rs1+imm][63:0] Branch > BGT rs1, rs2 imm if(rs1 > rs2) PC += imm
Load Byte Unsigned LBU rd,imm(rs1) rd ¢ M[rsi+imm][7:0] Branch < BLE rsi1, rs2 imm if(rsl <= rs2) PC += imm
Load Half word Unsigned LHU rd,imm(rs1) rd ¢ M[rsl+imm][15:0] Branch > unsigned BGTU rsl, rs2 imm if(rsl > rs2) PC += imm
Load Word Unsigned LWU rd,imm(rs1) rd ¢ M{rs1+imm][31:0] Branch s unsigned BLEU rsl, rs2 imm if(rsl <= rs2) PC += imm
Store Byte SB rs2,imm(rsl) M{rs1+imm][7:0] ¢ rs2[7:0] Jump] symbol PC ¢ symbol
Store Half word SH rs2,imm(rsl) M[rs1+imm][15:0] ¢« rs2[15:0] Jump And Link JAL symbol PC ¢ symbol; ra ¢ PC+4
Store Word SW rs2,imm(rs1) M[rs1+imm][31:0] ¢ rs2[31:0] Jump Register JR rsil PC ¢ rsl
Store Double Word SD rs2,imm(rs1) Mlrs1+imm][63:0] ¢ rs2[63:0] Jump And Link Register JALR rsl1 PC ¢ rsl; ra ¢ PC+4
Read/Write CSRRW rd,csr,rsi rd ¢ csr ¢ rsl RETurn from subroutine RET PC ¢ ra
Read & Set bit CSRRS rd,csr,rsi rd ¢ csr ¢ csr | rsl CALL subroutine CALL symbol PC ¢ symbol; ra ¢ PC+4
Read & Clear bit CSRRC rd,csr,rsl rd ¢ csr ¢ csr § ~rsl
Read/Write Imm CSRRWI rd,csr,imm rd ¢ csr ¢ imm
Read & Set bit Imm CSRRSI rd,csr,imm rd ¢ csr ¢ csr | imm
Read & Clear bit Imm CSRRCI rd,csr,imm rd ¢ csr ¢ csr & ~imm
63 60 59 44 43 0 38 3029 2120 1211 0
satp MODE (WARL) [ASID (WARL) \ PPN (WARL) vma VPN[2] \ VPN[1] [N[O | page offset
4 16 44 9 9 9 12
55 3029 2120 21 0 63 62 61 60 54 53 28 27 1918 109 87 6 543 210
pma PPN[2] PPN[1] PPN[O] page offset pte [N[PBMT| Reserved | PPN[2] | PPN[1] [PPNIO] [RsW [D[A[G[u[x[w[R]V]
26 9 9 12 12 7 26 9 9 2 11111111
%6 15 14 13 12 1 100 9 8 7 6 5 4 2 1 0 1514 13 1210 9 8 6 5 4 2 1 0 1514 13 1210 9 8 6 5 4 2 1 0
sstatus | XS[1:0] | FS[1:0] WPRI vs[1:0] [SPP [WPRI] UBE [SPIE | WPRI [SIE [WPRI| sip [o [wore[0 [seP| o [sTP| o [ssip[o] Sie [0 icore] o [see[o [stE] o [ssE[o]
2 2 2 2 1 1 1 1 3 1 1 2 1 3 1 3 1 3 1 1 2 1 3 1 3 1 3 11
SXLEN-1 SXLEN-2 0
scause ‘ Interrupt ‘ Exception Code (WLRL) ‘
1 SXLEN-1
Register ABI Name Description Saver
x0 zero Hard-wired zero -
x1 ra Return address Caller
X2 sp Stack pointer Callee
X3 gp Global pointer —
X tp Thread pointer —
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
X9 s1 Saved register Callee
x10-11 a0-1 Function arguments/return values Caller
x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
X28-31 t3-6 Temporaries Caller

Please try to enjoy each instruction equally and not show preference for any over the others

	A blue and yellow logo

Description automatically generated A blue and yellow logo

Description automatically generated RV64IM_Zicsr Instruction Quick Reference

