
 RV64IM_Zicsr Instruction Quick Reference
Base Integer Instructions: RV64I Multiply-Divide Instructions: RV64M

 Name Instruction RTL Name Instruction RTL
Shift Left Logical SLL rd,rs1,rs2 rd ← rs1 << rs2 MULtiply MUL rd,rs1,rs2 rd ← (rs1 * rs2)[63: 0]
Shift Left Log. Imm SLLI rd,rs1,imm rd ← rs1 << imm[4:0] MULtiply High MULH rd,rs1,rs2 rd ← (rs1 * rs2)[127:64]
Shift Right Logical SRL rd,rs1,rs2 rd ← rs1 >> rs2 MULtiply High S/U MULHSU rd,rs1,rs2 rd ← (rs1 * rs2)[127:64]
Shift Right Log. Imm SRLI rd,rs1,imm rd ← rs1 >> imm[4:0] MULtiply High Uns MULHU rd,rs1,rs2 rd ← (rs1 * rs2)[127:64]

Shift Right Arithmetic SRA rd,rs1,rs2 rd ← rs1 >> rs2 DIVide DIV rd,rs1,rs2 rd ← rs1 / rs2
Shift Right Arith. Imm SRAI rd,rs1,imm rd ← rs1 >> imm[4:0] DIVide Unsigned DIVU rd,rs1,rs2 rd ← rs1 / rs2

ADD ADD rd,rs1,rs2 rd ← rs1 + rs2 REMainder REM rd,rs1,rs2 rd ← rs1 % rs2
ADD Immediate ADDI rd,rs1,imm rd ← rs1 + imm[11:0] REMainder Unsigned REMU rd,rs1,rs2 rd ← rs1 % rs2

SUBtract SUB rd,rs1,rs2 rd ← rs1 - rs2 RV Privileged Instructions Load Upper Imm LUI rd,imm rd ← imm[19:0] << 12
Add Upper Imm to PC AUIPC rd,imm rd ← PC + (imm << 12) M-mode trap RETurn MRET

XOR XOR rd,rs1,rs2 rd ← rs1 ˆ rs2 S-mode trap RETurn SRET
XOR Immediate XORI rd,rs1,imm rd ← rs1 ˆ imm[11:0] Wait For Interrupt WFI

OR OR rd,rs1,rs2 rd ← rs1 | rs2 Pseudo-Instructions OR Immediate ORI rd,rs1,imm rd ← rs1 | imm[11:0]
AND AND rd,rs1,rs2 rd ← rs1 & rs2 Name Instruction RTL

AND Immediate ANDI rd,rs1,imm rd ← rs1 & imm[11:0] Load address LA rd, symbol rd ← symbol
Set if < SLT rd,rs1,rs2 rd ← (rs1 < rs2) ? 1 : 0 No operation NOP

Set if < Immediate SLTI rd,rs1,imm rd ← (rs1 < imm) ? 1 : 0 Load immediate LI rd, imm rd ← imm
Set if < Unsigned SLTU rd,rs1,rs2 rd ← (rs1 < rs2) ? 1 : 0 Copy register MV rd, rs1 rd ← rs1

Set if < Imm Unsigned SLTIU rd,rs1,imm rd ← (rs1 < imm) ? 1 : 0 One’s complement NOT rd, rs1 rd ← ~rs1
Branch = BEQ rs1,rs2,imm if(rs1 == rs2) PC += imm Two’s complement NEG rd, rs1 rd ← ~rs1 + 1
Branch ≠ BNE rs1,rs2,imm if(rs1 != rs2) PC += imm Two’s complement word NEGW rd, rs1 rd ← ~rs1 + 1
Branch < BLT rs1,rs2,imm if(rs1 < rs2) PC += imm Sign extend word SEXT.W rd, rs1 rd ← rs1[31:0]
Branch ≥ BGE rs1,rs2,imm if(rs1 >= rs2) PC += imm Set if = zero SEQZ rd, rs1 rd ← (rs1 == 0) ? 1 : 0

Branch < Unsigned BLTU rs1,rs2,imm if(rs1 < rs2) PC += imm Set if ≠ zero SNEZ rd, rs1 rd ← (rs1 != 0) ? 1 : 0
Branch ≥ Unsigned BGEU rs1,rs2,imm if(rs1 >= rs2) PC += imm Set if < zero SLTZ rd, rs1 rd ← (rs1 < 0) ? 1 : 0

Jump & Link JAL rd,imm rd ← PC+4; PC += imm Set if > zero SGTZ rd, rs1 rd ← (rs1 > 0) ? 1 : 0
Jump & Link Register JALR rd,rs1,imm rd ← PC+4; PC ← rs1 + imm Branch if = zero BEQZ rs1, imm if(rs1 == 0) PC += imm

Synch thread FENCE Fence on all memory and I/O Branch if ≠ zero BNEZ rs1, imm if(rs1 != 0) PC += imm
Environment CALL ECALL Transfer control to OS Branch if ≤ zero BLEZ rs1, imm if(rs1 <= 0) PC += imm

Load Byte LB rd,imm(rs1) rd ← M[rs1+imm][7:0] Branch if ≥ zero BGEZ rs1, imm if(rs1 >= 0) PC += imm
Load Half word LH rd,imm(rs1) rd ← M[rs1+imm][15:0] Branch if < zero BLTZ rs1, imm if(rs1 < 0) PC += imm

Load Word LW rd,imm(rs1) rd ← M[rs1+imm][31:0] Branch if > zero BGTZ rs1, imm if(rs1 > 0) PC += imm
Load Double Word LD rd,imm(rs1) rd ← M[rs1+imm][63:0] Branch > BGT rs1, rs2 imm if(rs1 > rs2) PC += imm

Load Byte Unsigned LBU rd,imm(rs1) rd ← M[rs1+imm][7:0] Branch ≤ BLE rs1, rs2 imm if(rs1 <= rs2) PC += imm
Load Half word Unsigned LHU rd,imm(rs1) rd ← M[rs1+imm][15:0] Branch > unsigned BGTU rs1, rs2 imm if(rs1 > rs2) PC += imm

Load Word Unsigned LWU rd,imm(rs1) rd ← M[rs1+imm][31:0] Branch ≤ unsigned BLEU rs1, rs2 imm if(rs1 <= rs2) PC += imm
Store Byte SB rs2,imm(rs1) M[rs1+imm][7:0] ← rs2[7:0] Jump J symbol PC ← symbol

Store Half word SH rs2,imm(rs1) M[rs1+imm][15:0] ← rs2[15:0] Jump And Link JAL symbol PC ← symbol; ra ← PC+4
Store Word SW rs2,imm(rs1) M[rs1+imm][31:0] ← rs2[31:0] Jump Register JR rs1 PC ← rs1

Store Double Word SD rs2,imm(rs1) M[rs1+imm][63:0] ← rs2[63:0] Jump And Link Register JALR rs1 PC ← rs1; ra ← PC+4

Read/Write CSRRW rd,csr,rs1 rd ← csr ← rs1 RETurn from subroutine RET PC ← ra
Read & Set bit CSRRS rd,csr,rs1 rd ← csr ← csr | rs1 CALL subroutine CALL symbol PC ← symbol; ra ← PC+4

Read & Clear bit CSRRC rd,csr,rs1 rd ← csr ← csr & ~rs1
Read/Write Imm CSRRWI rd,csr,imm rd ← csr ← imm

Read & Set bit Imm CSRRSI rd,csr,imm rd ← csr ← csr | imm
Read & Clear bit Imm CSRRCI rd,csr,imm rd ← csr ← csr & ~imm

Please try to enjoy each instruction equally and not show preference for any over the others

Register ABI Name Description Saver
x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 a0-1 Function arguments/return values Caller
x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

	A blue and yellow logo

Description automatically generated A blue and yellow logo

Description automatically generated RV64IM_Zicsr Instruction Quick Reference

